Joint Application Development Catapults Product Innovation for Orthopaedic Applications

Share this Article

3D Systems’ Gautam Gupta and Katie Weimer will be speaking at 3DPrint.com’s upcoming AMS online industry summit (Feb 9-10, 2021). Register here.

Authors: Gautam Gupta, Ph.D., Vice President and General Manager, Medical Devices, 3D Systems and Zachary Wilczynski, M.S., Senior Product Development Engineer, 3D Systems

Nearly 10 years ago, the first FDA 510(k) clearance in total knee arthroplasty brought the combination of personalized medicine, additive manufacturing, and orthopedic surgery into the spotlight. An increase in the use of patient-specific surgical planning solutions across many surgical specialties has resulted in a greater need for medical device companies to provide patient-specific workflows and tools alongside their off-the-shelf implant systems.

Total ankle arthroplasty is one of the fastest-growing arthroplasty segments, with a compound annual growth rate of 8.4% and $327M in revenue anticipated by 2026.1 There are currently 10 total ankle systems with 510(k) clearances in the US, and two companies with patient-specific technology to accompany the implant (Wright Medical/Stryker and Exactech).2 The Exactech Vantage® Total Ankle System, one of the current total ankle designs received its first FDA clearance in 2016.

3D Systems and Exactech have collaborated for more than a decade, since the development of the first FDA-cleared, 3D-printed orthopedic implant. The combination of 3D Systems’ VSP® surgical planning solution and Exactech’s Vantage Total Ankle System created the opportunity for innovative and collaborative development of patient-specific cutting guides. 3D Systems’ provided a proven digital workflow, additive manufacturing expertise, and regulatory understanding, while Exactech provided implant system aptitude and an eager surgeon design team. Together, this combination of knowledge and application development created Vantage Ankle PSI.

Vantage Ankle PSI is the second patient-specific total ankle system on the market in the US and consists of cutting guides and anatomic models produced via selective laser sintering (SLS) technology. The digital workflow begins with CT imaging data, segmented using  D2P®, followed by device design using Geomagic FreeForm®. Once the design is complete the patient-matched guides are 3D-printed on the ProX® SLS platform using the biocompatible DuraForm® ProX PA material. This combination of printer and material provides a repeatable and durable solution for anatomic model and guide manufacture. The DuraForm ProX PA cutting guides demonstrated consistent accuracy and ability to withstand surgical forces during benchtop and cadaveric studies. 3D Systems’ regulatory experience in patient-specific applications of additive manufacturing enabled the submission and clearance of the Vantage Ankle PSI.

Utilizing pre-operative planning and patient-specific tools, Vantage Ankle PSI aims to reduce time in the operating room and improve patient outcomes.3, 4 3D Systems’ team of engineers complete imaging segmentation, pre-surgical planning, and design with interactive feedback from surgeons across the country as part of the VSP surgical planning workflow. The surgeon then receives anatomic models that allow them to confirm the fit of the patient-specific guides, which increases surgeon confidence during the procedure.5 Vantage Ankle PSI cutting guides are uniquely designed to allow the surgeon to cut through the saw slots on each nylon guide, reducing the number of operative steps per case. The Vantage Ankle PSI has been utilized by several surgeons to complete nine cases thus far in a limited pilot launch after FDA clearance.

Orthopedic surgery continues to provide opportunities for innovation through the use of additive manufacturing and collaborative development agreements.  Additive manufacturing technology is continually evolving with more efficient printers, innovative materials, and an increased presence at point-of-care.  Patient-specific products have become a staple in many orthopedic procedures with total ankle arthroplasty taking the spotlight as of late.  Implant manufacturers and surgeons desire innovative and patient-centric products, additive manufacturing often answers this need. 

  1. https://www.medgadget.com/2019/09/total-ankle-replacement-market-2019-overview-industry-opportunities-and-outlook-to-2026.html
  2. https://www.podiatrytoday.com/keys-maximizing-outcomes-fourth-generation-total-ankle-replacements
  3. Patel A, Levine J, Brecht L, Saadeh P, Hirsch DL: Digital technologies in mandibular pathology and reconstruction. Atlas Oral Maxillofacial Surg Clin N Am 20:95-106, 2012
  4. Roser SM, Ramachandra S, Blair H, Grist W, Carlson GW, Christensen AM, Weimer KA, Steed MB: The accuracy of virtual surgical planning in free fibula mandibular reconstruction: comparison of planned and final results. J Oral Maxillofac Surg 68:2824-2832, 2010
  5. McCormick S, Drew S: Virtual model surgery for efficient planning and surgical performance. J Oral Maxillofac Surg 69:638-644, 2011

Share this Article


Recent News

Cummins to Commercialize Engine Part 3D Printed with GE’s Binder Jet Tech

3D Printed Artificial Leaves Could Generate Oxygen on Mars



Categories

3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews


You May Also Like

3D Printing News Briefs, May 2, 2021: Intech; 3DPrinterOS & Octoprint; BEAMIT; ITB, ITK, & University of Manchester; Makerbot; Satori & Oxford University

We’re going to take care of business first in today’s 3D Printing News Briefs, and then move on to some research and education. Intech Additive Solutions is reporting multiple orders...

TU Wien & Cubicure Develop Ivory Substitute for 3D Printing Restoration Pieces

Ivory, a hard, white material consisting mainly of dentine, makes up the tusks of several large animals, such as walruses, narwhals, and elephants. For a long time, the material was...

MIT: Speaking with Spiders Could Improve 3D Printers and Materials

A group of MIT scientists reported that they could transform spider’s silk threads into musical instruments. The long-standing experiment involves an innovative method that uses data sonification to convert 3D...

Allegro 3D Receives Almost $1M in Grant Award to Develop Bioprinter

Bioprinting company Allegro 3D has been awarded a National Science Foundation (NSF) Small Business Innovation Research (SBIR) Phase II grant for $997,692. The grant money will support the development of...


Shop

View our broad assortment of in house and third party products.