The U.S. Department of Energy (DOE)’s Advanced Research Projects Agency-Energy (ARPA-E) awarded a $1.2 million grant to high-performance materials developer QuesTek Innovations. The funds will be used to design and develop novel materials for next-generation turbine blade alloys and compatible coating systems. The Evanston, Illinois-based company will create a system of functionally-graded Niobium-based alloys suitable for additive manufacturing (AM) and capable of sustaining high-temperature operations and increase fuel efficiency.
The QuesTek team received the grant as part of $16 million in funding recently awarded for 17 Phase I projects through ARPA-E’s Ultrahigh Temperature Impervious Materials Advancing Turbine Efficiency (ULTIMATE) program. Released in April 2020, ULTIMATE helps the chosen teams launch promising new materials for gas turbines in the aviation and power generation industries. ULTIMATE teams will simultaneously develop new manufacturing processes that ensure turbine blades can operate at ultra-high temperatures and withstand the extreme operating environments commonly found in natural gas turbines.
Gas turbines are “air-breathing machines” which depend on the air mass through the compressor to generate power output, as described by Power Engineering International. Working under harsh environmental conditions means the gas turbines have to withstand some of the planet’s most extreme weather. Even though the temperature capability of current state-of-the-art blade materials has improved steadily over the last few decades to 1100 ºC (2012°F) thanks to incremental microstructure and chemistry refinement, through the ULTIMATE program, ARPA-E expects to improve the efficiency of gas turbines by increasing the temperature capability of the materials used in the most demanding environments.
“Designing a new turbine material with significantly better performance than current nickel-based superalloys is one of the biggest challenges facing the field of materials science today,” stated Dana Frankel, QuesTek’s Manager of Design and Product Development. “We’re excited for this opportunity to apply our proven computational materials design approach to develop a new refractory turbine alloy, paving the way for a step-change in turbine engine performance and efficiency.”
Referred to as the “Concurrent Design of a Multimaterial Niobium Alloy System for Next-generation Turbine Applications,” QuesTek’s project will apply some of its successful technology and processes. The team will rely on its Integrated Computational Materials Engineering (ICME)-based models, AM technology, as well as its turbine design and manufacturing, and extensive experience in modeling metal alloys and coatings to develop a printable materials solution for a next-generation turbine blade alloy and coating system capable of sustained operation at 1300°C (2372°F). Using computational tools, QuesTek can create models for further study of materials and their structures and chemistry, resulting in better performance.
QuesTek will focus on designing a Niobium-based multi-material alloy system consisting of a ductile, precipitation-strengthened, deformation-resistant alloy for the turbine “core,” combined with an oxidation-resistant, bond coat-compatible Niobium alloy for the “case.” The proposed multi-material Niobium alloy and coating system will achieve a combination of properties suitable for various gas or industrial turbine components such as blade, vane, and panel structures.
To define aerospace requirements, perform component design, and guide testing and qualification, QuesTek will be teaming up with Connecticut-based leading aircraft engine manufacturer Pratt & Whitney. Ultimately this collaboration will help accelerate the adoption of the designed materials into next-generation engines. The project team also includes engineers from NASA’s Jet Propulsion Laboratory (JPL) for AM process development and coating development experts from the University of Minnesota.
Natural gas is used in gas turbines to generate electricity, and its adoption is quickly growing. In fact, the U.S. Energy Information Administration (EIA) estimates that natural gas turbines produce approximately 38% of U.S. electricity. According to the ULTIMATE program guidelines, the development of new ultra-high temperature materials with compatible coatings and manufacturing technologies can increase gas turbine efficiency up to 7%, which will significantly reduce wasted energy and carbon emissions. It can also improve the economics of aviation power generation and other sectors.
But gas turbines’ operational temperature is currently limited by its component materials, particularly those in the hot gas path, such as turbine blades, vanes, nozzles, and shrouds. Turbine blades experience the most significant operational burden because they must concurrently withstand the highest temperatures and stresses. ARPA-E states that turbine blades are made of single-crystal nickel- or cobalt-based superalloys with limits high-temperature stability. Additionally, after many years of refinements, the development of new materials for turbine blades has plateaued. So the challenge lies in discovering, developing, and implementing novel materials that work at temperatures significantly higher than that of the nickel or cobalt superalloys.
“Natural gas turbines generate more than a third of the country’s electricity, supplying power to consumers across America,” said ARPA-E Director Lane Genatowski. “ULTIMATE teams will improve the efficiency of the generation sector by developing materials that increase producers’ efficiency and create positive economic benefits for industrial and public consumers nationwide.”
ULTIMATE teams will demonstrate proof of concept for alloy compositions, coatings, and manufacturing processes through modeling and laboratory-scale tensile coupon testing of essential properties. At the end of Phase 1, teams will be down-selected based on the technical review to receive additional funding to develop selected alloy compositions and coatings and the production of generic small-scale turbine blades to demonstrate manufacturability of designs. The teams are looking forward to the second phase of ULTIMATE, where an additional $14 million in funds will be available.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Luigi Mangione Reportedly Used 3D Printed Ghost Gun to Kill UnitedHealthcare CEO Brian Thompson
Luigi Mangione has been arrested on weapons charges and is believed to be the suspect in the assassination of UnitedHealthcare CEO Brian Thomson. It is now widely reported that the...
Daring AM: Tracking Criminal Cases Involving 3D Printed Guns Worldwide
As 3D printed firearms appear more frequently in criminal cases, law enforcement agencies worldwide are grappling with the challenges of tracking these untraceable weapons better known as ghost guns. From...
3D Printing Webinar and Event Roundup: November 24, 2024
It’s a slow week for webinars and events in the 3D printing industry, whether because everyone is still tired from last week’s Formnext or it’s almost Thanksgiving here in the...
Meteor Inkjet Brings New Software and Printhead Solutions to Formnext 2024
With Formnext 2024 just around the corner, Meteor Inkjet is bringing new capabilities to the forefront. The Cambridge, UK company, known for its industrial printer control electronics and software, teamed...