Sigma Labs & Northwestern Partner for In-Process Quality Assurance of DED Metal 3D Printing

IMTS

Share this Article

This spring, AM quality assurance software developer Sigma Labs, Inc. (NASDAQ: SGLB) launched the new Production Series of its PrintRite3D software for the commercial 3D metal printing industry, not long after signing an MoU with Materialise to integrate PrintRite3D with the Materialise Control Platform (MCP) product. Now the company has announced the expansion of its market opportunity through a new partnership with Northwestern University in Illinois. As part of this collaboration, Sigma Labs will develop and grow its PrintRite3D In-Process Quality Assurance technology so it can be used with powder-blow Directed Energy Deposition (DED) 3D printing.

“OEM’s have seen an increase in demand of the directed energy deposition machine ranging from high-level R&D projects to the production of prototype and production parts, many of which are for the aerospace industry. This initiative expands our market opportunity and is the first step in Sigma’s strategy to apply our technology across a broad array of Additive Manufacturing processes,” Mark Ruport, the Chief Executive Officer of Sigma Labs, said in a press release.

The New Mexico-headquartered company believes that its software will be a major impetus for the adoption of 3D metal printing, and has been working to steadily improve upon and expand its IPQA software brand, which provides real-time print monitoring and detects and classifies anomalies and defects during the 3D printing process, so production managers know about any quality issues immediately. Last month, Additive Industries’ MetalFAB1 printers integrated PrintRite3D’s in-process melt-pool monitoring, and Sigma Labs’ first contract for its new PrintRite3D Lite In-Process Quality Assurance system, created for compact entry-level 3D printers, went to Coherent.

With this new partnership, Sigma Labs has developed the necessary hardware and software, which will be validated by Northwestern University. The first beta PrintRite3D DED software will be installed at the university’s Advanced Manufacturing Processes Laboratory (AMPL), onto a custom, open-architecture, modular DED printer called the Additive Rapid Prototyping Instrument (ARPI). The ARPI is multifunctional, made up of three separate subsystems—primary 3D printing, secondary operations, and monitoring—which can each function in an integrated manner in a command-and-control environment or as a standalone system

“ARPI provides an integrated processing platform and environment for enhancing part accuracy, surface finish, and material properties beyond the current capabilities of customary DED (currently the primary AM processing method),” Northwestern’s AMPL states on the website.

Additive Rapid Prototyping Instrument (ARPI)

According to Northwestern’s own collaborative research with Argonne National Laboratory, DED technology relies on heated powder particles, which are blown through nozzles at a high-powered laser’s focal point and melted. A motion control system moves the molten pool of metal to build up the layers of a structure. DED 3D printing is fairly versatile, as it can be used to not only print new parts but also to add on to an existing part by repairing or coating it, and it’s a good choice for hybrid manufacturing applications as well.

DED technology is becoming more popular, especially for things like parts maintenance, rapid prototyping, and structural parts, and has been used in a variety of industries, including oil & gas, maritime, medical, defense, automotive, architecture, and aerospace.

Sigma Labs is actively looking for more commercial DED machine OEM partners to expand its beta testing program, so contact the company if you’re interested.

(Source/Images: Sigma Labs unless otherwise noted)

Share this Article


Recent News

Liquid Metal 3D Printing Sector Emerges with Fluent Metal’s $5.5M Investment

3DPOD Episode 191: Amy Alexander, 3D Printing at the Mayo Clinic



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 190: Generative Design for 3D Printing with Novineer CEO Ali Tamijani

Ali Tamijani, a professor in the Department of Aerospace Engineering at Embry-Riddle Aeronautical University, has an extensive background in composites, tool pathing, and the development of functional 3D printed parts,...

Featured

3DPOD Episode 189: AMUG President Shannon VanDeren

Shannon VanDeren is a consultant in the 3D printing industry, focusing on implementation and integration for her company, Layered Manufacturing and Consulting. For nearly ten years, she has been involved...

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry

Clare DiFazio’s journey into the 3D printing industry was serendipitous, yet her involvement at critical moments has significantly influenced the sector. Her position as Head of Marketing & Product Strategy...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...