Making a scientific or engineering breakthrough requires a lot of legwork and research, but also teamwork. An interdisciplinary group of Virginia Tech researchers from the Macromolecules Innovation Institute (MII), the College of Science, and the College of Engineering worked together to come up with a novel way to 3D print latex rubber, a development that the university states “has been documented only a handful of times in scientific literature.” Supported by a National Science Foundation award aligned with the Grant Opportunities for Academic Liaison with Industry program, Virginia Tech also collaborated with Michelin North America on the project.
Timothy Long, a professor of chemistry and a co-principal investigator, said, “My philosophy is these types of innovations are only achievable when you partner with people who are very different from you. This project represents the quintessential example of interdisciplinary research. Neither of our labs would be able to accomplish this without the other.”
Typically found in paint and gloves, the rubbery, elastic material latex is actually a group of polymers that are coiled up like a snake inside nanoparticles dispersed in water. Successfully 3D printed, it could be used for many applications, such as medical devices, shock absorbers, and soft robotics, since the technology allows the material to be fabricated in complex geometric shapes. It’s important to note that this is not the first time we’ve seen 3D printed latex—researchers from Queen Mary University of London published a paper last year about their use of a drop-on-demand method to print this tricky material. But the Virginia Tech team went a different direction, and used vat photopolymerization, publishing the results in their own journal article.
“Vat photopolymerization (VP) additive manufacturing fabricates intricate geometries with excellent resolution; however, high molecular weight polymers are not amenable to VP due to concomitant high solution and melt viscosities. Thus, a challenging paradox arises between printability and mechanical performance. This report describes concurrent photopolymer and VP system design to navigate this paradox with the unprecedented use of polymeric colloids (latexes) that effectively decouple the dependency of viscosity on molecular weight,” the abstract states.
Fifth-year macromolecular science and engineering student Phil Scott had been trying to synthesize a latex material with the proper mechanical properties and molecular weight, but wasn’t having much luck. He then began working with commercial liquid latexes, but he had to figure out how to modify the chemical composition so it could be 3D printed in a solid form. Unfortunately, this is easier said than done, as liquid latex is very fragile.
“Latexes are in a state of zen. If you add anything to it, it’ll completely lose its stability and crash out,” explained Viswanath Meenakshisundaram, a fifth-year mechanical engineering Ph.D. student in the Design, Research, and Education for Additive Manufacturing Systems Lab.
To get past this issue, Scott built a scaffold that could hold the latex particles in place. Then, photoinitiators and other compounds were added so that UV light-assisted printing was possible.
“When designing the scaffold, the biggest thing you have to worry about is stability of everything. It took a lot of reading, even stuff as basic as learning why colloids are stable and how colloidal stability works, but it was a really fun challenge,” Scott said.
VP turns viscous resins into shapes by curing the material with UV light, and Meenakshisundaram was tasked with figuring out how exactly to print the material…so he built his own patent-pending system. He knew the machine would need to be able to print high-resolution features across a large area, and together with his advisor, co-principal investigator Christopher Williams, thought up a way to scan UV light across a large area.
Meenakshisundaram also had the idea of embedding a computer vision system onto the custom printer to ensure accurate, detailed prints, as fluid latex particles caused scattering outside of the UV light on the surface of the latex resin. The camera captures an image of each individual latex resin vat, and a custom algorithm allows the printer to essentially view the UV light’s interaction on the resin, and then adjust the print parameters accordingly in order to cure only the shape being printed.
“The large-area scanning printer was a concept I had, and Viswanath made it into reality in short order. Then Viswanath came up with the idea of embedding a camera, observing how the light interacts with the material, and updating the printing parameters based on his code,” explained Williams, the L.S. Randolph Professor of mechanical engineering and interim director of MII. “That’s what we want from our Ph.D. students: We provide a vision, and they accomplish that and grow beyond as an independent researcher.”
All this hard work resulted in 3D printed latex parts, like an impeller, with strong mechanical properties in a semi-interpenetrating polymer network matrix, which the team claims had never before been documented for elastomeric latex materials.
“An interpenetrating polymer network is like catching fish in a net. The scaffold gives it a shape. Once you put that in the oven, the water will evaporate, and the tightly coiled polymer chains can relax, spread or flow, and interpenetrate into the net,” Meenakshisundaram explained.
According to the two professors on the team, 3D printed latex lays the foundation for printing many other materials that they say have not been printable in the past, like soft rubbers.
“When I was a graduate student working on this technology, we were excited to get unique performance from the shapes we could create, but the underlying assumption was we had to make do with very poor materials. What’s been so exciting about this discovery with Tim’s group is being able to push the boundary of what we assumed was the limit of a printed material’s performance,” said Williams.
(Source/Images: Virginia Tech)
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Have You Met SAM: Steel Additive Manufacturing
“Have you met SAM?” This question was on a banner above our stand at Formnext last November. We believe the usage rate of additively manufactured steel parts is far too...
3DPOD 237: 3D Printing in Golf with Ryan Roach, Director of Innovation at Cobra PUMA Golf
In this episode of the 3DPOD, we take a deep dive into 3D printing for golf. Cobra PUMA Golf has gone further than other firms, employing Multi Jet Fusion, binder...
Europe at a Crossroads: Transforming Challenges into Industrial Opportunities
Europe is awakening to its challenges, and with adversity comes opportunity. Our industries stand at a crossroads, ready to make transformative choices that will shape their future. While Europe faces...
The Importance of Services in 3D Printing: Steady Growth and Promising Potential
Additive manufacturing services are often underestimated in our industry, with the spotlight focusing on hardware, software, and the products they enable. Industry coverage and public perception frequently center on major...