Additive Manufacturing Strategies

MULTI-FUN Consortium Aims to Improve Metal 3D Printing

ST Medical Devices

Share this Article

As the focus continues to shine on metal additive manufacturing (MAM), 21 partners are coming together from eight countries (Austria, Switzerland, Germany, Spain, United Kingdom, Poland, Portugal and Belgium) in a three-year, multi-tiered project to advance AM processes, materials, and equipment for multi-material parts.

Dubbed MULTI-FUN, this long-term endeavor will solve issues in metal printing with powder bed fusion, where only basic alloys are available. Overall, key performance indicators expected are improvement in AM products by 40 percent, better use of resources and with smaller environmental footprint, and the emergence of greater potential and opportunities for businesses in Europe.

The consortium members involved plan to refine 3D printing with metal using new active and structural materials like aluminum and low-alloyed steel for wire arc additive manufacturing (WAAM). They also plan to design complex parts without any restrictions due to size—whether printing on the nano-level or the large scale.

Research into the use of nano-materials spans studies from integration of conductive materials into textiles to economic analysis of nano-metals within a wide range of applications—including critical industries like automotive and aerospace. In the MULTI-FUN project, the researchers will explore nano-materials further, integrating them into thermal materials, electronics, sensors, and more as four different objectives are explored:

  1. Development of five new materials (with at least three related to nanotechnology), customized for AM processes.
  2. Study of new processes and development of AM hardware and software for the production of desired materials. The consortium has outlined a plan for a minimum of ten new materials combinations using five new materials to be displayed by seven demonstrators engaged in different applications.
  3. Manufacturing and evaluation of seven physical demonstrators using multiple materials and functionalities. Three use cases in the areas of structural parts, molds, and testing equipment will serve as examples to show the potential in four applications like automotive, aeronautics, space, and production.
  4. Ongoing evaluation and improvement in AM processes in regard to the economy and the environment, use of materials, strategies, and demonstrator design—ultimately all leading to better standards and support of necessary regulatory bodies.

Consortium members follow.

A turnkey solution from WAAM3D (Image: WAAM3D)

[Source / Images: Chronicle]

 

Share this Article


Recent News

3D Printed Car Company Local Motors Shuts Down

$2M in Electronics 3D Printers Sold to Military Customer by Optomec



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

3D Printed Flexible Displays Could Be Made at Home… One Day

In order to progress additive manufacturing (AM) to the point of directly producing functional end goods—think smartphones, tablets, sensors and more—the 3D printing of electronics is going to have to...

Nano Dimension Buys Global Inkjet Systems to Boost Electronics 3D Printing

Nano Dimension (Nasdaq: NNDM) has taken the recent excitement in the 3D printing market to grow rapidly. Before 2021 was over, the pioneer of circuit board 3D printing scooped up micro additive...

Featured

Raise3D, Optomec, & Xact Metal Launch New 3D Printers at Formnext

Formnext 2021 is going on in Frankfurt, Germany right now, and we’ve been inundated with announcements of new industry partnerships, new hardware, and more, as the AM industry revels in...

3D Printing News Briefs, October 30, 2021: Research, Turbine Repair, & More

Today’s 3D Printing News Briefs is a little bit of everything, starting with a research paper on 3D printing tungsten carbide surfaces with extreme wear resistivity. Moving on, a runner...


Shop

View our broad assortment of in house and third party products.