RAM Metal 3D Printing Process Receives Patents in Multiple Countries

IMTS

Share this Article

Metal 3D printing materials developer and supplier Elementum 3D, founded in 2014 by Dr. Jacob Nuechterlein, works to expand the selection of metal materials for additive manufacturing (AM) through the introduction of advanced composites, metal alloys, and superalloys, along with development of optimized processes, such as its core Reactive Additive Manufacturing (RAM) technology. Now, the company has announced that it has been granted patents in the United States, Canada, and Australia for its RAM process.

“Our revolutionary technology advances metals development for additive manufacturing at an unprecedented pace,” explained Dr. Nuechterlein in a press release. “It gives engineers an extra degree of freedom they’ve never experienced, inspiring them to bring into existence new and innovative applications.”

In order to increase adoption of AM, the industry needs more choices when it comes to 3D printable metal materials. That’s where companies like Elementum 3D—which recently received its ISO 9001:2015 certification for quality management practices and systems—come in. The Colorado-based firm has a knack for creating custom materials that work for applications in different industries. It also sells feedstock powders with accurate printing parameters that can be customized for even more applications.

“We’re continuously looking for new solutions to help companies around the world, in their quest to increase product strength, durability, and reduce weight,” the Elementum 3D website states.

Unmodified “standard” 6061 aluminum alloy after printing by laser powder bed fusion showing large grains and an extensive network of intergranular cracking. The left image is unetched and the right micrograph is etched with Weck’s reagent and taken at higher magnification.

The company’s RAM process is used to make high-performance metal alloy powders for 3D printing based on previously established wrought alloys, such as aluminum 1000, 2024, 6061, 7050, and 7075, which was not possible with conventional manufacturing. So, RAM technology actually helps grow the library of possible AM materials, and, in using it, Elementum 3D has come up with a new range of laser powder bed fusion (LPBF) materials that have much better properties in comparison to their corresponding wrought alloy materials.

Because of the risk of hot tearing, or solidification cracking, it was impossible to 3D print many popular, strong, wrought aluminum alloys; the end parts would have poor mechanical properties. But, with RAM, sub-micron inoculants form in the melt pool. These, in turn, nucleate the aluminum grains in order to create an equiaxed  microstructure (having approximately equal dimensions in all directions), which results in high performance and good printability.

L-R: Elementum 3D’s A6061-RAM2 aluminum alloy showing a crack-free microstructure with the darker phase comprising reinforcing particles, and the very fine (1-2 µm) aluminum grains revealed after etching with Weck’s reagent in the higher magnification image.

In the image above, you can easily see that the A6061-RAM2 3D-printed material has a microstructure with no cracks, and as the company states in its release, “a dispersion of nucleating and reinforcing particulates.”

With the issuance of these patents, Elementum 3D is purporting to democratize materials freedom, and getting rid of material compromises, by making the 3D printable versions of its alloys easily available to the industry. By combining popular traditional materials that previously could not be 3D printed and new materials, like those enabled by RAM technology, with additive manufacturing, the company is speeding up the establishment of new applications for the 3D printing world.

L-R: Unmodified “standard” 2024 aluminum alloy without RAM addition exhibits columnar grain growth, and Elementum 3D’s A6061-RAM2 aluminum alloy with RAM addition exhibits ductal behavior.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

(Source/Images: Elementum3D)

Share this Article


Recent News

Will There Be a Desktop Manufacturing Revolution outside of 3D Printing?

Know Your Würth: CEO AJ Strandquist on How Würth Additive Can Change 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Pressing Refresh: What CEO Brad Kreger and Velo3D Have Learned About Running a 3D Printing Company

To whatever extent a business is successful thanks to specialization, businesses will nonetheless always be holistic entities. A company isn’t a bunch of compartments that all happen to share the...

Würth Additive Launches Digital Inventory Services Platform Driven by 3D Printing

Last week, at the Additive Manufacturing Users’ Group (AMUG) Conference in Chicago (March 10-14), Würth Additive Group (WAG) launched its new inventory management platform, Digital Inventory Services (DIS). WAG is...

Featured

Hypersonic Heats Up: CEO Joe Laurienti on the Success of Ursa Major’s 3D Printed Engine

“It’s only been about 24 hours now, so I’m still digesting it,” Joe Laurienti said. But even via Zoom, it was easy to notice that the CEO was satisfied. The...

Featured

3D Printing’s Next Generation of Leadership: A Conversation with Additive Minds’ Dr. Gregory Hayes

It’s easy to forget sometimes that social media isn’t reality. So, at the end of 2023, when a burst of doom and gloom started to spread across the Western world’s...