4DTexture: Holistic Computational Design for 3D Surfaces

IMTS

Share this Article

Researchers from both the US and China are taking digital fabrication and texture in materials to the next level, releasing the findings of their study in the recently published ‘4D Texture: A Shape-Changing Fabrication Method for 3D Surfaces with Texture.’

4D printing is growing as an area of interest for many researchers, but like 3D printing—and even more so—there is still enormously uncharted territory. Users are able to move beyond the constraints of 3D printing to meet pressing needs for more complex projects like creating new metastructures, surfaces, and new materials and techniques. 4D printing offers more to users innovating beyond the 3D, seeking to fabricate more complex geometries too.

In this study, the authors introduce a new design approach called 4DTexture which they describe as a ‘holistic computational design and fabrication method, leveraging the state-of-the-art 4D printing process to make 3D surfaces with texture.’

Time and material consumption comparison between conventional printing and 4DTexture method.

Shape-changing principle: the textured structure can be printed without a support structure, which can transform into a 3D textured shape after heat triggering.

While the benefits of 3D printing are and continue to be vast for industrial users, 4D printing opens up new areas for fabrication that usually cannot be explored through conventional technology either. The new technique created in this study allows for actuators to be made with vertical texture structures—later to be turned into more complicated forms. The system runs on Rhino with Grasshopper, comprised of the following for preview and customization:

  • Texture element
  • Arrangement
  • Tendency and transformation type

The workflow: users can (a) design the element of texture and (b) the shape of actuator, define the transformation type and (c) the arrange type of the texture, (d) set the tendency of the texture, then (e) generate the g-code file which can be printed by an FDM printer, finally users can obtain (f) the printed flat piece which can be heat triggered into (g) the target 3D shape.

Experiments were performed on textured structures as the researchers built up a ‘library’ consisting of shapes like hemispheres, pyramids, and hemicylinders. The program offers tools so that parameters can be customized; for example, designers can use offered 4D morphing mechanisms from previous projects or modify the settings if needed. Once the actuator shapes are set, textures can be arranged. Height and size can be chosen, and users can also move textures.

PLA was used with a MakerBot Replicator 2X as the researchers printed sample textures using the defaults for the hardware, producing self-rising, self-coiling, and self-bending objects.

Transformation types: (a) self-rise (b) self-coil and (c) self-bend.

“The transformation mechanism can be controlled by the printing direction, which has been embedded into our system to simulate the behavior,” stated the researchers.

Just as 3D printing has allowed for a variety of different forays into fashion, 4D printing has too, bringing all the benefits of materials that can morph and shift as needed. In this study, the researchers fabricated fashion accessories, a modular toy, a haptic handle, and 3D fasteners.

Fashion design: (a) The flat printed piece; (b) The decorative scenario.

Customized haptic handle: (a) The flat printed piece; (b) The usage scenario.

3D fasteners: (a) The flat printed piece; (b, c) The usage scenario.

“We hope such a system can expand the design opportunity of 4D printing technology with a hobbyist FDM printer,” concluded the researchers. “In the future, we plan to implement a systematic material experiment for improving transformation accuracy and fine-tune the parametric setting with Grasshopper to make the design tool more user-friendly. We also found that the texture structure can serve as a constrained layer which needs further investigation.”

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Share this Article


Recent News

3D Printing Financials: Materialise Reports Growth in 2023 with Medical Segment Success

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Unpeeled: Solenoids, Hydrogel Buildings and Missiles

Malgorzata A. Zboinska and others at Chalmers University of Technology and the Wallenberg Wood Science Center have managed to 3D print a hydrogel made of alginate and nano-cellulose. They hope...

Featured Sponsored

3DXTECH Launches “Pellet to Part” Program for 3D Printing Materials

Always looking to shake up the material extrusion segment of 3D printing, Michigan-based 3DXTECH has introduced a novel initiative named the “Pellet to Part” program. To further drive collaboration with...

Interview: NAGASE Facilitates AM Adoption with EMPOWR3D 3D Printing Brand

The additive manufacturing (AM) market is entering a new phase in which large companies from outside of the segment have entered and begun consolidating. In reality, this trend has been...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...