Nitin Singh and Martin van Hecke, both researchers in the Netherlands, explore pseudo-mechanisms and 3D printing of related building blocks. Their findings are released in the recently published ‘Design of pseudo-mechanisms and multistable units for mechanical metamaterials.’
As flexible, rigid elements linked together yet displaying ‘zero-energy’ motion, mechanisms are critical to aspects such as jammed media and spring networks, playing a major role in mechanical engineering. Mechanisms are key in the design of basic robotic tools like grippers, while mechanism-based metamaterials take from such designs but are comprised of more flexible components connecting rigid parts.
‘Excited’ by external forces, a variety of unique properties may emerge:
- Negative response parameters
- Shape-morphing
- Topological polarization
- Programmability
- Multistability
- Self-folding
In pseudomechanisms we find flexible, coupled elements that display motion with low energy cost. The researchers note that they can become widespread through particle swarm optimization.
“Our central finding is that most PMs are geometrically very distinct from true mechanisms; most PMs are not simply perturbed mechanisms, but PMs permeate the design space very far away from the true mechanism subspace,” explain the researchers. “We extend our search techniques to obtain multistable units and bring these to life using 3D printing.”
In terms of systems, the research team considered groups of quadrilaterals connected by hinges. Equally-sized squares consisted of zero-mode systems underly numbers of mechanical metamaterials.
“Generalizations, including to regular tilings of alternatingly sized squares, rectangles or 3D, are well known,” stated the researchers. “The condition for such collections of quadrilaterals to form a mechanism are simple.”
Design by particle swarm optimization included an algorithm meant to decrease cost function, identifying ‘deep minima’ in a rugged landscape—using a ‘swarm’ of particles meant to represent numerous designs.
Generic flexible unit cells offer diluted units with a target curve of Dt1 (θ) = 1 and deployed PSO for designs bearing low values of f.The researchers also noted that all sample quads were bistable and tristable, offering configurations like what was initially projected. A ninth quad of suitable length was added with full units being 3D printed using Filaflex.“Our findings suggest a complex organization of the design space. To gain insight into this structure, we have explored whether the value of f increases if a certain solution x0 is randomly perturbed,” stated the researchers. “Specifically, we generate 1000 random 24 dimensional vectors dx with each entry uniformly distributed between -1 and 1, and then calculate f(x0 + εdx) for a range of ε.”
“Conceptually, the step from a 2 × 3 mechanism to a 3 × 3 pseudo mechanism might be similar to that from a 3 × 3 to a 3 × 4 pseudo mechanism, but it is an open question how the design space evolves for increasingly large systems,” concluded the researchers.
“A further intriguing possibility arises for, e.g., bellows: while the volume of a polyhedron cannot change as it flexes, pseudo-mechanisms may in practice work equally well. Moreover, we wonder whether pseudomechanisms can mimic an equivalent of the topological polarization, edge-modes and cornermodes observed in topologically non-trivial mechanical metamaterials that are based on true mechanisms. Finally, our design space is only of moderate dimensions, and obtaining nontrivial designs is computationally relatively cheap. This makes our designs eminently suited to test whether machine learning techniques would be suitable to, first, be trained to distinguish ‘good’ from ‘bad’ pseudo mechanisms, second, to detect and classify multistable designs, and third, can be used to speed up the design of such structures.”
Researchers around the world continue to experiment with mechanical metamaterials, engaging in projects related to programmable robotics, 4D printing, and with a variety of alternative materials. Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Design of pseudo-mechanisms and multistable units for mechanical metamaterials’]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing News Unpeeled: Custom Cycling Shoes and Microwave Curing
Lawrence Livermore National Laboratory (LLNL) has developed Microwave Volumetric Additive Manufacturing (MVAM), which uses microwaves to cure 3D printed parts. In a paper they explain that a multi-physics model let...
3D Printing News Briefs, September 1, 2024: Conductive Silver Ink, Egg Whites, Wood Pulp, & More
We’re taking care of business first in today’s 3D Printing News Briefs, and then moving on to news about a variety of different 3D printing materials, including egg whites. We’ll...
Ceramics 3D Printing Market to Hit Nearly $1B by 2033
Additive Manufacturing (AM) Research has published its latest report, this time covering the rapid growth of the ceramics 3D printing sector. According to the market research firm’s “Ceramics 3D Printing...
3D Printing News Unpeeled: $970 Million Contract, Plasters and HEA
Researchers from the University of Pennsylvania, the University of Colorado, NIST and more have worked on “Additive manufacturing of highly entangled polymer networks,” where low use of photoinitiators along with a...