Analyzing FFF 3D Printing with High-Performance Thermoplastics

IMTS

Share this Article

Shahriar Bakrani Balani recently presented a thesis, ‘Additive manufacturing of the high-performance thermoplastics: Experimental study and numerical simulation of the Fused Filament Fabrication,’ to Institut National Polytechnique de Toulouse. Delving further into the science of materials and 3D printing, Balani offers a comprehensive definition of FFF 3D printing along with focusing on the importance of process parameters and materials.

Starting from the beginning of 3D printing with Chuck Hull and the first SLA printer, Balani gives a full history of the technology—along with explaining the basics of its evolution, and how it works. Balani outlines the three different AM groups (liquid-based, solid-based, and powder-based) and all the resulting processes possible.

Three different additive manufacturing groups according to Hernandez et al. [14]

“When this Ph.D. thesis started in 2015, none of the machines was suitable to print high-performance thermoplastics such as PEEK (polyetheretherketone). Indeed, PEEK is a high-performance semicrystalline thermoplastic with a melting temperature above 340 °C and a higher viscosity compared to other conventional polymers which are typically used in FDM (FFF) process,” explained Balani. “A high viscosity combined with a high melting temperature increases the difficulties to process this kind of material. Because of these properties, the use of PEEK as raw material for 3D printing is limited.

“However, in June 2015, INDMATEC launched the PEEK 3D Printer as the first FDM 3D Printer for high-temperature polymers. This new 3D printer, which features a build volume of 155 x 155 x 155 mm, is equipped with a hotend that reaches up to 420 °C. It can 3D print objects out of PEEK. The evolution of the FFF (FDM) printers from 1990 until now shows that their ability to print a broader range of polymers with higher precision increases while their price is reduced.”

Levels of analysis for FFF prototypes

Noting that there have not been many studies regarding the use of high-performance polymers, Balani cites only several previous sources concerned with printing orientation, temperatures regarding PEEK, and influences such as tensile, flexural, and impact strength.

Different raster orientations were examined, along with relation to mechanical properties. Other studies focused on basics like print speed, temperature, layer thickness—and ultimately, how environmental temperature influenced PEEK tensile strength. Other studies have been related to surface roughness and possible surface treatments.

For PEEK, several studies have been performed regarding FFF, beginning with medical use and experimentation with temperature and filament diameter—leaving the researchers to note that nozzle and printing platform temperature were critical to suitable tensile strength. Other studies examined the impact of thermal conditions on mechanical properties, as well as crystallization.

“The next step is to print PEEK samples under controlled environment at different temperatures and printing parameters to be mechanically tested. Furthermore, the determination of the temperature and the heat field by using infrared thermography would be necessary to validate the heat transfer predicted by our numerical model,” the researcher concluded. “Hereby, we have studied the mechanism of interdiffusion of the macromolecular chains and the relaxation at temperature above the melting temperature.

“However, the interdiffusion starts below the melting temperature at slow rate, so, determining the relaxation times at lower temperature could help to optimize the printing speed. Also, the influence of the printing conditions on the welding (bonding) strength of a few filaments is a step towards the improvement of the bonding strength. For that, a specific mechanical test would be developed to quantify the inter-filament adhesion. Lastly, when the use of the FFF process will be mastered for high-performance thermoplastics, polymeric based composites could be used as well. Bio-sourced composites, long carbon and glass fiber composites, and metal/polymer blends materials could be used as raw materials to reach new properties. For all these materials, the FFF process requires a fine control of the material properties during the deposition to ensure the best quality of the 3D printed parts.”

Sequence of the works done in this study in order to determine the crystallization kinetics in the FFF process

PEEK has been used for a wide range of applications, with numerous studies surrounding the material—from use with small medical implants to discs coated with antibacterial agents, and the use of composites.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Additive manufacturing of the high-performance thermoplastics: Experimental study and numerical simulation of the Fused Filament Fabrication’]

Share this Article


Recent News

World’s Largest Polymer 3D Printer Unveiled by UMaine: Houses, Tools, Boats to Come

Changing the Landscape: 1Print Co-Founder Adam Friedman on His Unique Approach to 3D Printed Construction



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Profiling a Construction 3D Printing Pioneer: US Army Corps of Engineers’ Megan Kreiger

The world of construction 3D printing is still so new that the true experts can probably be counted on two hands. Among them is Megan Kreiger, Portfolio Manager of Additive...

Featured

US Army Corps of Engineers Taps Lincoln Electric & Eaton for Largest 3D Printed US Civil Works Part

The Soo Locks sit on the US-Canadian border, enabling maritime travel between Lake Superior and Lake Huron, from which ships can reach the rest of the Great Lakes. Crafts carrying...

Construction 3D Printing CEO Reflects on Being Female in Construction

Natalie Wadley, CEO of ChangeMaker3D, could hear the words of her daughter sitting next to her resounding in her head. “Mum, MUM, you’ve won!” Wadley had just won the prestigious...

1Print to Commercialize 3D Printed Coastal Resilience Solutions

1Print, a company that specializes in deploying additive construction (AC) for infrastructure projects, has entered an agreement with the University of Miami (UM) to accelerate commercialization of the SEAHIVE shoreline...