Researchers from Portugal are examining three issues concerning material extrusion (MEX) additive manufacturing (AM) of thermoplastic composites. Their findings are released in the recently published ‘Embedded Fiber Sensors to Monitor Temperature and Strain of Polymeric Parts Fabricated by Additive Manufacturing and Reinforced with NiTi Wires,’ after using nickel-titanium wires to reinforce composites, followed by a comprehensive evaluation regarding the performance of the materials.
Creating a sensor to monitor both temperature and strain shifts on the PLA matrix, the researchers employed cascaded optical fiber sensors—formed by combined signals of the fiber Bragg grating (FBG) sensor and the FP cavity interferometer.
“The FP cavity was fabricated by producing an air microbubble between a single-mode fiber (SMF 28e) and a multimode fiber (MMF, GIF625),” stated the authors. “To achieve point-of-care monitoring, the FBG was inscribed as close as possible to the FP interferometer.”
Ultimately, the team realized that the PLA matrix could be further refined in terms of strain and temperature by combining the reflection spectra of the cascaded optical sensor. PLA was used due to benefits such as low melting point, good tensile stiffness, and final surface quality.
Benefits of this process include:
- Different strain and temperature sensitivities between two sensing elements
- Decreased invasiveness inside the matrix composite
- No requirement for extra-material integration
Two sets of PLA + NiTi ribbon + sensor samples were fabricated on a commercial BQ Prusa i3 3D printer. A cavity was created at half-thickness to integrate the NiTi wire and fiber. Printer settings as follows:
- Printer core nozzle of 1.2 mm diameter
- Layer height of 0.5 mm
- Infill at 100%
- Print speed of 7 mm/s
Samples were cooled to room temperature and then both variations in temperature and strain were monitored.
Three cycling tests were performed for the study, as follows:
- First cycle – currents of 2.12, 2.81, and 3.1 A were applied
- Second cycle – 4.0 A current was used
- Third cycle – 4.0 A current was used
“The moments in which different currents were injected on the sample can be clearly proved and measured by all integrated fiber sensors. During the natural cooling, a thermal perturbation (structural transformation of R-phase to austenite) can be observed near 33.0 °C, and at the end of the cycling tests, a sample contraction of ~100 µm was detected on the PLA sample,” concluded the researchers.
“Regarding the tensile tests, the higher increase of temperature (exothermic behavior) arises when the applied force is between the 0.7 and 1.1 kN, on the heat-treated zone. During the unload step, a slope variation in the temperature behavior associated with the thermal-induced transformation in the heat-treated region (R-phase to austenite) was detected.”
3D printing with composites is becoming increasingly popular as it allows researchers much greater versatility in production, along with adding lighter weight and strength, whether using carbon fiber, bronze PLA, or wood composites. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Embedded Fiber Sensors to Monitor Temperature and Strain of Polymeric Parts Fabricated by Additive Manufacturing and Reinforced with NiTi Wires’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Berkeley’s 3D Printer Tested in Suborbit, Could Be a Game-Changer for Space Exploration
In a future deep-space mission, a cracked part on a spacecraft millions of miles from Earth would most likely lead to disaster. But a team of researchers from the University...
Redwire Expands Military Focus with Hera Systems Deal
As space exploration becomes more accessible and competitive, the demand for breakthrough technology is rapidly increasing. Redwire (NYSE: RDW) is stepping up in a big way by acquiring Hera Systems,...
Going for Gold: All of the Ways 3D Printing Is Used for the Olympic Games
The Olympics are my favorite sporting event—I scream at the television during sand volleyball and speed skating the way other people do during football games, American or otherwise. Nearly 29...
NASA’s Artemis II Rocket Rolls Out with 3D Printed Parts
NASA moved closer to the Moon with the rollout of the core stage for the Artemis II Space Launch System (SLS) rocket. This rocket is designed to take astronauts around...