UCLA and Architected Materials 3D Print Protective Material for Helmets, in NFL’s Head Health Challenge

Share this Article

Professional football isn’t getting less physical but, in the wake of national attention, concerns are becoming more prominent regarding the risk of brain injury to players. In September 2014, the New York Times published an article citing a study by the Segal Group conducted at the behest nfl-logoof the NFL (National Football League), which found that one in three players is likely to “develop long-term cognitive problems” as a result of head injuries during play. According to the study, such problems become apparent at, said the study, “notably younger ages” in professional football players “than in the general population.”

The NFL was sued by players and has, as a result, become proactive in looking for ways to detect head injuries early on to, ideally, prevent long-term consequences if they happen. In the Spring of 2014, the NFL joined forces with Under Armour, the sporting apparel and equipment comphead healthany, and GE (General Electric) to encourage scientists, researchers, and sports enthusiasts to create new tools for preventing, detecting, and diagnosing concussions.

The Head Health Challenge, which will run in parts over four years, launched by the NFL, GE, and Under Armour, will award up to $40 million to reward participants creating innovative solutions “that produce advancements in preventing, measuring and detecting brain injury, innovative brain protective materials and devices, and training methods that result in behavior modifications.”

One solution was a 3D printed “microlattice” of materials that were engineered to lessen the impact of a blow to the head. A team of scientists at the University of California in Los Angeles (UCLA) worked with the firm Architected Materials, Inc. to produce an “energy-absorbing material” that can replace the standard foam padding now provided in helmets of professional football players. When 3D printed, the material — Architected Lattice — looks something like a “delicate honeycomb.”

The material would line the entire interior of the helmet and will potentially be designed to vary in different areas of the helmet depending upon where the head is more vulnerable and force is a greater threat and more likely to cause damage.

The new material, which is still undergoing testing at UCLA, is also designed to conduct air around the inside of the helmet. “One of the things we’ve seen early on,” said one UCLA researcher, “is that this material can load up many times and recover very quickly,” which means it can absorb an impact and return to its original, force-receptive state almost immediately.

In virtually every way, the new 3D printed material seems superior to the foam that has been used in football helmets. In the lab testing where force is simulated with machines, the archicted lattice is coated with “carbon nano-tubes,” which send a kind of electrical signal to the researchers’ computers, providing critical data regarding where more impact is likely to take place and how the microlattice responds.

Head+health+2_mid

The material is still being developed as the researchers continue various tests that will assist them in making it as effective — and protective — as possible. Let us know what you think about this material over the Head Health Challenge Architected Lattice forum thread at 3DPB.com.

Facebook Comments

Share this Article


Related Articles

Interview with Alok Anil of Next Big Innovation Labs

Interview with Colin Keogh of the Rapid Foundation



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Make All The Things Part 1: Having Fun and Being Creative at the Makerspace

This is an article on the enthusiasm and spirit of being within a makerspace or a fabrication lab. It is important to be aware of these places, as they are truly inspiring and creative places to be within. There is never a lack of vigor and creativity flowing from these places.

3D Printing & the Circular Economy Part 1: Intro

This is a brief article on the implications of what a circular economy entails. This article briefly goes into how 3D Printing is able to a help to the growing problems of waste management within our world.

Rapid 2019: Interview with GE’s Jake Brunsberg on Binder Jetting for Manufacturing

A while ago GE announced its surprising entry into the binder jetting market. GE was already active in two metal 3D printing technologies Laser Powder Bed Fusion and Electron Powder...

The Entrepreneurial and Maker Community

This is a short article on the maker movement, entrepreneurial activity, and the global market economy as a whole. The means of production are important for any future economy, and makers may have the tools for it.


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!