EPlus3D

Gypsum-Based 3D Printing Assists in Classifying Geo-Architectural Rock Specimens

Formnext Germany

Share this Article

Michelle Williams has authored a study (carried out at Sandia National Laboratories and funded by Laboratory Directed Research and Development) for the U.S. Department of Energy, Office of Scientific and Technical Information, outlining recent findings about unique materials for digital fabrication in Geomechanical characterization of Geo-architectural Rock Specimens using Gypsum-based 3D printing.

Because of the natural diversity in rock samples being studied by scientists, there are often challenges in classification. Williams’ study is meant to improve methods for the evaluation of characteristics in natural rock. As with so many other fields too, ranging from automotive to aerospace, medicine and dental, construction, and nearly every industry one can think of, 3D printing offers improvements on previous methods, designs, prototypes and parts, and more.

In relation to rocks, 3D printed models can help scientists have a better understanding of the following:

  • Strength
  • Density
  • Porosity
  • Microstructure
  • Mineralogy
  • Geophysical
  • Mineralogical interactions

Conventional methods for study include microscopy, CT scans, micro-CT scans, and many other techniques, to include rock mass classification; however, issues such as fractures, bedding, inclusions, joints, and more, present challenges during examination. Many benefits arise with the use of 3D printing, from ease in production of models as well as speed, affordability, and the potential for fabrication of complex geometries.

The scientists printed 36 samples in cylinder form, using a powder-based Gypsum 3D ProJet360 printer with an HP11 printhead and VisiJet PXL Clear binder as the material.

Printing direction with respect to horizontal tray. Adapted from SAND2019-14916C.

Direction and location of velocity measurements

The researchers noted velocity and took pictures of each sample before evaluation; they were then baked in a humidity chamber and tested on an MTS 22kip frame.

3D printed sample stack with LVDTs

MTS 22kip load frame used for UCS testing at Sandia National Lab

Stress versus strain curves reflected the greatest strength in samples printed in the H-long direction, with the vertically printed samples coming in second. H-short samples were the weakest.

H-long samples-strongest, stress vs. strain plots

H-short samples-weakest, stress vs. strain plots

Vertical samples-middle strength, stress vs. strain plots

“With varying amount of binder, the larger amount (blue) resulted in the strongest rock during UCS testing,” stated Williams. “Density was also measured to ensure additional binder amount, and the higher density sample is the sample with the larger amount of binder.”

Peak strength vs. varying amount of binder

Density vs. varying binder amount

The environment was responsible for differences in strength. The team noted that baked samples were strongest, while weakest were left in humidity levels of 80 percent.

“Test results of the 3D printed geo-architected rock specimens demonstrated reasonable reproducibility and appear to be a promising path towards increasing the ability to characterize natural rock,” concluded Williams.

“Future work could improve the Python code to also calculate and compare Young’s Modulus from the UCS data versus that from the velocity measurements. Due to the high impact of the 3D printing, advances in the technology appear inevitable. Such advances may help control sample microstructure, which will increase the value of this technology for understanding classification of rock characteristics.”

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Geomechanical characterization of Geo-architectural Rock Specimens using Gypsum-based 3D printing.’]

Share this Article


Recent News

3D Printing News Briefs, September 30, 2023: Drone Customization, 3D Printed Bandage, & More

Space, 3D Printers, and Australian Ambition: The iLAuNCH Revolution Begins



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Unpeeled: BLT, M Holland & Tecnológico de Monterrey

BLT has announced its half year results for 2023 with $2.44 million in profit for the first half year up from a $5.34 million loss last year for the same period....

AML3D Makes C-Suite Changes & Ramps Up its Metal 3D Printing Sales in Support of US Navy

The board of AML3D, the Australian original equipment manufacturer (OEM) of metal additive manufacturing (AM) platforms, recently concluded a four month review of the company’s leadership structure, which has resulted...

3D Printing Webinar and Event Roundup: September 17, 2023

It’s another busy week filled with 3D printing webinars and events! Topics include photopolymers and industrial automation, aerospace and 3D scanning, DIGITAL FOAM and composite 3D printers, biomaterial bioinks, and...

3D Printing Webinar and Event Roundup: September 10, 2023

This might possibly be the longest webinar and event roundup we’ve ever done at 3DPrint.com—that’s how many offerings there are this week! I won’t waste your time in this introduction...