Exone end to end binder jetting service

Binder Jet 3D Printing: Studying Print Speed & Effects on Surface Roughness & Density

INTAMSYS industrial 3d printing

Share this Article

International researchers study different features that affect binder jetting, outlining their findings in the recently published ‘The Effect of Print Speed on Surface Roughness and Density Uniformity of Parts Produced Using Binder Jet 3D Printing.’ Binder jetting continues to be popular with industrial users because it is fast; however, that does not mean prints come out perfect, leaving the scientists here to work on methods for improving the overall outcomes of prototypes and parts.

Fabrication of a binder jetting part relies on:

  • Powder dispensing
  • Powder spreading
  • Binder dispensing
  • Binder drying

“The printing time (the time it takes to dispense binder droplets) can be decreased by either increasing the number of printing modules in the machine itself, or by increasing the speed at which the printhead traverses across the bed. However, increasing the printhead traverse speed can negatively affect the feature resolution and dimensional accuracy.”

Consistency is one of the most critical elements to production, and especially in manufacturing parts with close tolerances, however, the following issues can cause interruption to a good flow rate and consistency:

  • Machine wear
  • Machine cleanliness
  • The number of times powder is recycled
  • Humidity in the air

Schematic of the advanced compaction technology used during the powder spreading process.

For this study, the researchers investigated how powder speed will affect density of green body parts, long with surface roughness during sintering. They also explored how layer thickness and droplet size affect surface roughness. The research team 3D printed on an ExOne Innovent+ binder jet printer using the ExOne solvent binder at 70% saturation.

The build layout of each trial as shown in the Innovent+ software.

Five different coupon samples were sintered, measured, and weighed. Surface roughness was then measured five times.

a) Schematic of a coupon being tested 5 times in various positions across the surface of the coupon and b) schematic of the stylus traverse direction against layer thickness of angled coupons.

There were six printing trials in all, with each one of them demonstrating that increase of powder spread result in a density increase. Slow spreading speeds allowed for the greatest consistency in powder packing density.

“Although the coupons with the 50 μm layer thickness have a lower average green density than the 30 μm layer thickness, the coupons were able to sinter to over 98% dense,” stated the researchers. “When evaluating the effect coupon angle has on green density, the average density decreases with increased coupon angle.

“The surface roughness (Ra) typically increases with faster spreading speeds and increased coupon orientation angle,” concluded the researchers. “The smallest average surface roughness value (Ra) was found to be 4.05 μm with the 50 μm layer thickness and 30 pLa printhead on a flat surface with a spread speed of 3 mm/sec. The largest average roughness (Ra) was found to be 9.78 μm with the 50 μm layer thickness and 30 pL printhead on a 22.5° coupon with a 125 mm/sec spread speed.”

As researchers worldwide continue to study binder jet 3D printing, from use with materials like aluminum alloys to experimental powders, ceramic 3D printing, and more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

The average green density profile for each Trial in respect to coupon print angle.

[Source / Images: ‘The Effect of Print Speed on Surface Roughness and Density Uniformity of Parts Produced Using Binder Jet 3D Printing’]

Share this Article


Recent News

3D Printing Webinar and Event Roundup: September 26, 2021

3D Printing News Briefs, September 25, 2021: Partnerships, Software, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Systems Finalizes Sale of On-Demand Business, Will Operate as Quickparts

Pioneering additive manufacturing solutions provider 3D Systems finalized the $82 million deal for the sale of its on-demand 3D printing and custom manufacturing business. The rebranded company will operate as...

3D Printing Webinar and Event Roundup: September 19, 2021

We’ve got another busy week of webinars and events to tell you about! Topics in this week’s roundup run the gamut from 3D digital textures and FDM 3D printing potential...

3D Printing News Briefs, September 18, 2021: Business, Materials, & More

We’re filling up the front of today’s 3D Printing News Briefs with plenty of business, as one company celebrates an anniversary and two others welcome new executives to their ranks....

3D Printing Service Hubs Appoints New CEO, Alex Cappy

Changes are taking place at Hubs since it was acquired by manufacturing service provider Protolabs (Nasdaq: PRLB). Not only has the subsidiary removed the “3D” from its name, but it...


Shop

View our broad assortment of in house and third party products.