AMR Software
AMR Data Centers

Binder Jet 3D Printing: Studying Print Speed & Effects on Surface Roughness & Density

Share this Article

International researchers study different features that affect binder jetting, outlining their findings in the recently published ‘The Effect of Print Speed on Surface Roughness and Density Uniformity of Parts Produced Using Binder Jet 3D Printing.’ Binder jetting continues to be popular with industrial users because it is fast; however, that does not mean prints come out perfect, leaving the scientists here to work on methods for improving the overall outcomes of prototypes and parts.

Fabrication of a binder jetting part relies on:

  • Powder dispensing
  • Powder spreading
  • Binder dispensing
  • Binder drying

“The printing time (the time it takes to dispense binder droplets) can be decreased by either increasing the number of printing modules in the machine itself, or by increasing the speed at which the printhead traverses across the bed. However, increasing the printhead traverse speed can negatively affect the feature resolution and dimensional accuracy.”

Consistency is one of the most critical elements to production, and especially in manufacturing parts with close tolerances, however, the following issues can cause interruption to a good flow rate and consistency:

  • Machine wear
  • Machine cleanliness
  • The number of times powder is recycled
  • Humidity in the air

Schematic of the advanced compaction technology used during the powder spreading process.

For this study, the researchers investigated how powder speed will affect density of green body parts, long with surface roughness during sintering. They also explored how layer thickness and droplet size affect surface roughness. The research team 3D printed on an ExOne Innovent+ binder jet printer using the ExOne solvent binder at 70% saturation.

The build layout of each trial as shown in the Innovent+ software.

Five different coupon samples were sintered, measured, and weighed. Surface roughness was then measured five times.

a) Schematic of a coupon being tested 5 times in various positions across the surface of the coupon and b) schematic of the stylus traverse direction against layer thickness of angled coupons.

There were six printing trials in all, with each one of them demonstrating that increase of powder spread result in a density increase. Slow spreading speeds allowed for the greatest consistency in powder packing density.

“Although the coupons with the 50 μm layer thickness have a lower average green density than the 30 μm layer thickness, the coupons were able to sinter to over 98% dense,” stated the researchers. “When evaluating the effect coupon angle has on green density, the average density decreases with increased coupon angle.

“The surface roughness (Ra) typically increases with faster spreading speeds and increased coupon orientation angle,” concluded the researchers. “The smallest average surface roughness value (Ra) was found to be 4.05 μm with the 50 μm layer thickness and 30 pLa printhead on a flat surface with a spread speed of 3 mm/sec. The largest average roughness (Ra) was found to be 9.78 μm with the 50 μm layer thickness and 30 pL printhead on a 22.5° coupon with a 125 mm/sec spread speed.”

As researchers worldwide continue to study binder jet 3D printing, from use with materials like aluminum alloys to experimental powders, ceramic 3D printing, and more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

The average green density profile for each Trial in respect to coupon print angle.

[Source / Images: ‘The Effect of Print Speed on Surface Roughness and Density Uniformity of Parts Produced Using Binder Jet 3D Printing’]


Share this Article


Recent News

Nikon Advanced Manufacturing & America Makes to Develop Aluminum Powder Dataset

University of Glasgow Builds Facility to Test Structural Integrity of 3D Printing Materials in Space



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Daring AM: 3D Printing Antennas, Factories, and Rockets in Space

From 3D printed antennas rising 100,000 feet above Earth to futuristic orbital factories and metal parts made in space, 3D printing is reshaping how we build for space. In three...

New Tech Transmits 3D Printing Granules in Microgravity

Researchers from the University of Glasgow have secured a patent for an in-space microgravity 3D printing technology. The patented invention employs a conveyor-based system to transport granulate material for fused...

Featured

Flexibility Is the Bottom Line: Touring the Visitech Americas DLP Light Engine Factory

Visitech, a leader in optics for digital light processing (DLP) and powder bed fusion (PBF), recently expanded its footprint in the U.S. with a new factory in Allen, Texas. This...

3devo’s Filament Maker TWO Advances Custom 3D Printing Filament Production

The Dutch firm 3devo has been producing compact filament makers for several years, establishing their devices as mainstays for polymer and filament companies worldwide. The 3devo machines enable these companies...