Ystruder: New Syringe System Offers Feature Rich, Open-Source Multifunction Extrusion

Share this Article

In the recently published ‘Ystruder: Open source multifunction extruder with sensing and monitoring capabilities,’ Ville Klar, Joshua M. Pearce, Pyry Kärki, and Petri Kuosmanen explore the use of syringe pumps for projects requiring materials to be extruded at a specific rate. The use of syringes continues to trend upward in labs due to open-source accessibility and affordability—along with offering further potential for innovation. In this study, they have developed a new pump design called the Ystruder.

Because there are budgetary concerns in many research projects, reducing cost is imperative to many projects that require high-performance equipment—in developing areas especially. Numerous open-source hardware (OSHW) syringe pumps have been created in the past ten years via 3D design and FDM 3D printing.

Today, even more, ‘feature-rich’ syringes are being produced, and for this study, the Ystruder was created as a further refinement to pump designs. Also meant to expand the number of viable applications, the Ystruder is both compact and lightweight and has dual uses as either a syringe or extruder to be mounted on a basic stand or 3D printer frame. The controls can also be integrated into other devices like robotic arms. Other mechanical parts can be 3D printed, with open-source printed circuit boards (PCBs) fabricated easily and affordably too.

a) The Ystruder syringe pump extruder, b) Ystruder mounted on a Prusa I3 style 3D printer using tubing, and c) Ystruder mounted on a 43 mm-diameter spindle mount.

While the default syringe for the Ystruder is a standard 10 mL, many other sizes and types can be used, and are easily attached and removed. Different mounts and attachments can be fabricated, and open-source, Python-based software is also available.

“The use of luer-lock syringes enables efficient testing of various orifice sizes,” stated the authors. “In contrast to most conventional syringe pumps, the Ystruder features load sensing capabilities. The piston load measurement makes it possible to characterize the extrudability of various liquids directly during extrusion or 3D printing. Users can, therefore, assess and identify suitable extrusion parameters more efficiently.”

The authors include:

  • Design file information
  • Bill of materials
  • Tools required and build instructions
  • Step-by-step assembly

For validation in 3D printing, the researchers attached the Ystruder to a CNC machine-frame, testing parameters and printing, leaving them to note that the syringe pump ‘performs well,’ as well as functioning as a paste extruder.

“Ystruder has the potential to be used in demanding applications such as 3D bioprinting. While the design is already sufficient for a wide variety of extrusion tasks, there are both hardware and software modules that require additional development. We distinguish four key areas of improvement, error quantification, control development, interface improvement and extension of modularization,” conclude the researchers.

“The design can already be easily modified by e.g., replacing the stepper motor with a finer pitch version or upgrading to a higher current capacity stepper motor driver. The sizing information provided in the Supplementary information is intended to accommodate adapting the design to different extrusion requirements.”

Errors of displacement, extruded volume, flow rate and speed, standard error of the mean shown in black.Fig. 10.Displacement, extruded volume and piston force of the Ystruder using different kinematic viscosities (cSt), flow rates (mL/min) and syringe diameters (mm). a) 1000 cSt, 1 mL/min, 1.8 mm b) 1000 cSt, 1 mL/min, 0.5 mm, c) 10000 cSt, 0.2 mL/min, 0.5 mm, d) 1000 cSt, 0.2 mL/min, 0.5 mm.16V. Klar et al./HardwareX 6 (2019) e00080

3D prints, original CAD-model at the top and printed structure at the bottom a) Suzanne-mesh from Blender, Acrylic paste b) Honeycomb structure, heat resistant silicone c) The letter A, ceramic paste material.

While new 3D printers come on the market continually these days, along with software, hardware, and a variety of new materials, additional parts such as syringes and nozzles are offered too from bioprinting syringes to acoustic nozzles, to 3D syringe delivery systems, and more.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Ystruder: Open source multifunction extruder with sensing and monitoring capabilities’]

 

Share this Article


Recent News

XYZprinting Case Study: TrySight Realized 90 Days Return on Investment of MfgPro230 xS SLS

NuVasive 3D Prints Microporous Surfaces and Optimized Lattices for Better Spinal Implants



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Systems’ Gautam Gupta on Point-of-Care 3D Printing and the Hospitals of the Future

With experience manufacturing over one million medical devices, planning 120,000 patient-specific cases, and supporting more than 85 CE-marked and FDA-cleared medical devices, 3D Systems’ healthcare business is focusing on accelerating...

3DChain: An AI-Driven 3D Printing Service Platform

Co-Founder of 3DChain, Babak Zareiyan, gives an outlook and explanation of the 3DChain concept, a unique manufacturing service platform for 3D printing. You developed 3DChain, a design and additive manufacturing...

3D Printing Custom Hearing Device Parts at 2X Efficiency with Figure 4

3D printing has made significant impacts in nearly every industry, and on every scale too. This includes markets many may not have considered, unless they had a need for products...

Featured

3D Scanner Buying Guide 2020

3D scanning is now an engrained business process in industry, architecture, quality assurance and reverse engineering. It is, however, quite a difficult process to master. Many different 3D scanning technologies...


Shop

View our broad assortment of in house and third party products.