FFF 3D Printing: Degradable Polymer Nanocomposities for Medical Applications

Share this Article

In the recently published ‘Degradable Polymer Nanocomposites for Fused Filament Fabrication Applications,’ researchers from Ireland are exploring the massive use of plastics around the world, along with environmental concerns. In the medical field specifically, they highlight resorbable and degradable polymers, used in devices like implants, stents, drug delivery services, and more.

Fused Filament Fabrication (FFF) 3D printing has emerged as a popular technology for researchers engaged in the fabrication and study of items like medications in solid dosage forms. In this study, the authors explored how to create a degradable nanocomposite with polymers poly(ethylene oxide) (PEO) and poly(ε-caprolactone) (PCL) and the nanoclay halloysite nanotubes (HNTs) by utilization of hot-melt extrusion (HME). They also explored whether there is serious potential for such materials in relevant applications.

Once the materials were prepared via HME, they were tested regarding:

  • Melt flow indexing
  • Mechanical testing
  • Differential scanning calorimetry
  • Scanning electron microscopy

“From the characterization the most favorable blend was selected and HNTs of 2 and 6 weight percent were added with the same testing techniques employed to evaluate their influence on the material,” stated the researchers.

The team also endeavored to create a new filament for 3D printing, tested in a MakerBot Replicator 2X 3D printer to create a stent. As they began evaluating the study overall, the researchers noted that when they added the PCL to the PEO, a ‘plasticizing effect’ occurred. This was noticeable in both the melt flow index and when the blends reached their melting point; at that time, there an increase in the PCL.

The resultant extruded filament was utilized as the feedstock in a MakerBot Replicator 2X 3D printer in order to print a stent demonstrating the possibilities it offers for personalized medical uses.

Melt flow index results of Blend 4 and the two nanocomposite batches, Blend 4A and Blend 4B (n=3).

“The addition of the HNTs significantly increased the Young’s modulus 11 % and 25 % when the loading was 2 wt.% and 6 wt.% respectively,” explained the researchers.

Selected mechanical data for the batches under investigation where, E represents the Young’s modulus, σy is the yield stress and σmax is the maximum tensile stress (n=5).

Scanning electron microscopy (SEM) images of Blend 4 and the two nanocomposite batches, Blend 4A and Blend 4B

When performing microscopy, the researchers also saw no signs of outright HNT aggregation at the surface. They were also optimistic for high mixing efficiency via the HME.

“A small almond shaped accumulation of HNTs was observed on the surface of Blend 4A as shown with this accumulation was identified as HNTs using energydispersive x-ray spectroscopy.

“The work described the successful development of a filament feedstock from known degradable materials for use in Fused Filament Fabrication with the produced filament utilized in the fabrication of a stent. The use of this technology is promising as it may allow for the fabrication of stents tailored to a patient’s specific needs. Furthermore, there is also the potential application for loading drug molecules in the large lumen space of the HNTs which could slowly release as the device slowly degrades within the body,” concluded the researchers.

Work with composites has expanded greatly in recent years, from antioxidant PLA to wood composites to glass fiber—along with a host of different innovation within the medical realm involving devices like implants and stents.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Degradable Polymer Nanocomposites for Fused Filament Fabrication Applications’]

Share this Article


Recent News

Italy: Studying Properties & Geometry of Scaffold-Like Structures for Tissue Engineering

The State of 3D Printing in Heavy Equipment



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Volvo’s Conservation Project: 3D Printed Tiles for a Living Seawall at Sydney Harbour

Oysters, seaweed, fish, algae and many more organisms have a new home at North Sydney Harbour. At one of the world’s largest Living Seawalls in Bradfield Park, an ocean conservation...

Volvo CE Adopts 3D Printing for Spare Parts and Prototyping

Volvo Construction Equipment (Volvo CE) is one of the largest companies in the construction equipment industry, with more than 14,000 employees worldwide. The company’s values center around sustainability and innovation,...

Metal Additive Manufacturing Helps Renault Trucks Reduce Weight of 4-Cylinder Engine by 25% Using 3D Printed Components

In spring of 2015, 3D artist and designer Bernhard Bauer used Blender to 3D model, from scratch, and 3D print a 1:14 scale Renault delivery truck replica for one of...

Old Meets New in Latest OpenRC Tire Design from Thomas Palm

Leif Tufvesson loves cars. He spent part of his career working as a technician for Volvo’s Research and Development Department in Gothenburg, Sweden, followed by a six-year stint at the...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!