
The Allevi Liver dECM promises the fabrication of liver tissue that has a more representative physiological function. The product uses a combination of a type I collagen Allevi bioink for patterning as well as Xylyx Bio’s highly desired liver-specific TissueSpec® ECM to enhance specialized biological response.
Xylyx Bio products for cell culture are obtained from porcine or human tissue sources and processed to various formats, enabling cell culture models that are significantly more predictive of physiology. Their 3D TissueSpec® ECM hydrogels and scaffolds provide support to cell culture models, facilitating the acceleration of drug discovery, development and tissue regeneration.
“We are thrilled to partner with Allevi and share our expertise in tissue-specific ECM,” stated Andrea Nye, Chief Executive Officer at Xylyx Bio. “Recognizing the importance of the native cellular microenvironment, Xylyx Bio harnesses the body’s innate biology in the form of tissue-specific extracellular matrix. By sourcing extracellular matrix from native organs and tissues, Xylyx produces tissue-specific substrates that comprise both the mechanical properties and complex ratios of ECM components specific and unique to each tissue and organ type.”
Founded in 2014, Allevi claims that its “mission is to provide users the ability to design, engineer, and manufacture 3D tissue.” To deliver important building blocks and provide users with the best experience possible to drive new scientific discoveries, Allevi is hopeful that the new dECM bioink will provide scientists a revolutionary approach that allows scientists to print 3D tissue structures with biochemical and mechanical features inherent in human physiology.
[Images: Allevi and Xylyx Bio]
Xylyx Bio’s Co-founder and Chief Strategy Officer, John O’Neil, added that a “deeper understanding of the comprehensive nature of tissues and cells and their interaction with the cellular microenvironment – that is, the extracellular matrix – holds great promise to lead to a paradigm shift in 3D bioprinting, allowing researchers to study physiologic activity of cells in vitro towards a better understanding of disease and development of more effective drugs and treatments.”
You May Also Like
Modular 3D solutions are the future of additive manufacturing
Why is it important to maintain the most open additive manufacturing environment available? In uncertain times, the elasticity and the possibility of selecting components of a 3D printing system are...
Rusal America Brings Aluminum 3D Printing Materials to Neighborhood 91 3D Printing Campus
Aluminum manufacturer Rusal America has announced that it will be joining the first-of-its-kind 3D printing campus, Neighborhood 91, located at Pittsburgh International Airport’s (PIT). The site is meant to represent...
Wematter Raises €4M to Scale Up Low-Cost SLS 3D Printing
Swedish startup Wematter is on a mission to democratize 3D printers and has raised €4 million ($4.7 million) in its latest funding round to scale up its advanced selective laser...
HP & Ford Team to Recycle 3D Printed Waste into Car Parts
In some of the most interesting additive manufacturing news I’ve heard recently, HP and Ford announced that they have teamed up to revolutionize how 3D printing waste is reused in...
Services & Data
Printer & Scanner Price QuotesUpload your 3D Models and get them printed quickly and efficiently.