AMS 2026

Ongoing Betatype and Safran Collaboration Results in Reduced Weight & Build Time for 3D Printed Electrical Generator Housing

RAPID

Share this Article

London-based 3D printing consultancy company Betatype, founded in 2012, knows a little something about optimizing metal 3D printing applications in order to create functional components for customers in a wide variety of industries, such as aerospace, automotive, consumer goods, medical, and more.

Last fall, the UK company was approached by Safran Electrical & Power, which designs and fabricates electrical systems for fixed and rotary wing commercial and military aircraft, for help in improving the design of an electrical generator housing, and in 3D printing it as well.

We came across Betatype in a search for additive manufacturing specialists and it was clear after our initial discussions that they had the knowledge and skillset we were looking for to add value in our new part production programme,” Dr. Mark Craig, the Materials, Special Processes and Composites Company Expert for Safran’s Power Division, said in the original case study.

Auxiliary Power Unit Generator Housings, L-R: Current design for CNC machining, scale plastic prototype; First generation pilot part optimized for AM, designed and fabricated by Betatype, Grade 5 Titanium, full scale component (230 x 230 x 235 mm).

Here’s a quick recap of the original partnership: Betatype focused on some specific areas of the part – namely reducing the overall weight and improving its stiffness and strength – in its new and improved design. The company created a proof of concept, which was a first for one of its case studies: an ultra-high density lattice was used as part of a sandwich structure that had over ten million elements.

First Generation Auxiliary Power Unit Generator Housing: Section of pilot part highlighting metal foam core of outer wall sandwich structure.

We knew creating a more complex, higher density lattice structure was the key to achieving what Safran was looking for in the part. Applying our technology and multi-scale approach, we were able to control the scan path and exposure settings down to each element of the sandwich structure’s design,” said Betatype CEO Sarat Babu. “By pushing laser powder bed fusion well beyond its standard processes, we created the ultra-high density lattice structure required.”

The proof of concept was a success – optimizing Safran’s original design for 3D printing and changing it from multiple machined components into a single part. In addition, Betatype was able to save costs and add value by majorly decreasing the amount of time it took to manufacture the housing, and reducing the overall part count.

Now, all of that information we already knew. But the collaboration between Safran and Betatype has continued since 2018, and the latest results are even more encouraging. Safran paired its knowledge and expertise of energy and power applications with Betatype’s main capabilities of software technology development and 3D printing application expertise to take the project to the next level.

Perspective views of Second Generation Auxiliary Power Unit Generator Housing Pilot Part, designed by Betatype, fabricated by Renishaw, Stone, AlSi10Mg.

The two companies continued to work on evolving Betatype’s original proof of concept, pushing the boundaries of what metal 3D printing can achieve. They combined Betatype’s scalable Process Control technology with specific application development, which helped reduce the weight of the complex part by 30%, when compared to the first generation version; additionally, this also lowers material use and waste.

They also used scan path optimization and precise process control, which standard AM software can’t offer, to increase productivity, make the build process faster, and ultimately reduce the build time by 30%. The collaborators also switched from using a sandwich panel on the part to using external ribbing, which helped maintain the necessary stiffness while reducing the profile volume, and also made it possible to 3D print the parts in aluminum, instead of titanium.

Top & bottom views of Second Generation Auxiliary Power Unit Generator Housing Pilot Part, designed by Betatype, fabricated by Renishaw, Stone, AlSi10Mg.

Betatype has helped Safran exceed its AM goals, and Safran is eager to continue using 3D printing to make other components and housings in the future.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images: Betatype]


Share this Article


Recent News

3D Printing News Briefs, January 17, 2026: Titanium Scrap, Autopsy Analysis, & More

Formlabs Fuse 1+ 30W: Small SLS Printer, Massive Impact



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

ASTM International Works with UK MoD on America Makes Project

The UK Ministry of Defense (MoD) will work with ASTM International on a $1.1 million project to let it work in closer concert with the US Department of War (DoW)....

Featured

UK Government Funds Research to Develop 3D Printed Metal Alloys for Nuclear Fusion

The UK Atomic Energy Authority (UKAEA), a government-funded research organization, has demonstrated a persistent interest in developing metal additive manufacturing (AM) materials for nuclear fusion applications, including multiple phases of...

Featured

Top 10 3DPrint.com Stories of 2025: Kickstarter, Consumer Goods, Bankruptcy, & More

As Vanesa Listek wrote, last year was a major turning point for additive manufacturing (AM), as the industry is working to sort itself out. Customers want proven use cases and...

3D Printing Predictions 2026: Industrial Production & Polymer Additive Manufacturing

Polymer additive manufacturing is seeing less investment, attention, and disruption than metal additive manufacturing currently. Less crucial for defense needs, it has of late had far fewer new entrants. But,...