Additive Manufacturing Strategies

3D Printing is Changing the Look and Aerodynamics of The Typical Tennis Racket

ST Medical Devices

Share this Article

c1If any of you have ever played tennis, then you know that besides the skill of your opponent and yourself, the racket is the single most influential part of the game. Play with a cheap $15 racket that you bought on Amazon.com (like I did last time I played) and your game will likely suffer, but play with a quality racket and you may just surprise yourself and your opponent.

Ever since Howard Head and the Prince brand introduced the very first over-sized racket head in 1976, this integral part of the game has remained relatively unchanged. CRP Technology, and two very promising design students from the Rimini Academy of Fine Arts, named Mario Coppola and Salvatore Gallo, have teamed up to create what may become the next generation of tennis rackets.c4

The team first broke a typical racket down into three separate units, the handle, the neck, and the head. Their goal was to create an aerodynamic product which would hopefully improve a player’s game, while also featuring quite the intriguing aesthetics. The focus was primarily on the handle, which as you can see from the images, is quite unique. Once they figured out the perfect design for each of the three parts of the racket by fabricating structural variants for each, it was now time to put it all together. The team worked to figure out how to produce a frame which would allow for uniformity within the racket, leading to smooth, balanced play.

c3To create the prototype, they used CRP Technology’s Windform XT 2.0 material. This material, which is made for use in a laser sintering 3D printer, combines carbon fiber with a polymer base to produce parts which can stand up to extreme stress, while being relatively resistant to damage, and very light in weight; everything you’d want in an actual tennis racket. In fact, Windform material is used heavily within the space and motorsport industries for final production runs as well as prototyping because of its unique physical properties.

Will this new racket be the future of tennis? Maybe not. However, it’s certainly a step in the right direction, a direction in which complexity of design does not equate to complexity within the manufacturing process. Through the use of exciting new additive manufacturing materials and machines, the future of all sports may soon look a lot different than the cookie cutter designs we are all used to seeing.

Let us know you thoughts on this uniquely designed tennis racket and what it could mean for the future of the sport. Discuss in the Windform Tennis Racket forum thread on 3DPB.com.

c2

Share this Article


Recent News

3D Printing Drone Swarms, Pt 11: AI-Powered Boats

3D Printed Bone to Be Driven by A.D.A.M. Crowdfunding Campaign



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, January 12, 2022: Rebranding, Bioprinting, & More

First up in today’s 3D Printing News Briefs, Particle3D has gone through a rebrand, and a team of researchers developed a way to 3D print and preserve tissues in below-freezing...

3D Printing News Briefs, December 18, 2021: Business, Research, & A Metal Benchy

We’ve got business to share in today’s 3D Printing News Briefs, as Freemelt and Etteplan have entered into a strategic partnership, EOS installed its 1,000th 3D printer in the North...

Featured

Incus Closes Series A Round for Slurry SLA Metal 3D Printing

Austrian slurry stereolithography (SLA) company Incus has closed a series A round with AM Ventures and is bringing aboard ex-EOS CEO Adrian Keppler as a consultant, as well as investor....

BICO Announces Million-Dollar Contract for 3D Printed Joint Implants

For five years, Nanochon has been developing a 3D printed implantable device and novel nanomaterial to treat cartilage loss and damage in joints as an alternative to knee replacements. Now,...


Shop

View our broad assortment of in house and third party products.