Anisoprint Introduces New Composite Basalt Fiber Material for Continuous Fiber 3D Printing

IMTS

Share this Article

Headquartered in Luxembourg and Russia, Anisoprint wants to introduce a new industrial manufacturing technology for 3D printed optimized structures made out of composite materials. Through its desktop Composer 3D printer, the startup offers continuous carbon fiber fabrication and material for industrial-grade parts, and just recently launched a brand new 3D printing material for continuous fiber printing – Composite Basalt Fiber, or CBF.

In a process it calls composite filament co-extrusion, the Anisoprint Composer uses a combined extruder to load two types of thermoplastics, and then a third for continuous carbon fibers. The anisoprinting technology instills much higher strength in engineering filaments such as ABS, nylon, PC, PETG, and PLS. But when applying its new CBF material, companies can really achieve improved properties: parts printed in this way, with this material, are 15 times stronger than many plastics, 5 times lighter than steel, and 1.5 times lighter and stronger than aluminum.

“Anisoprinting is the technology of continuous composite fiber coextrusion,” the company wrote. “Coextrusion allows using different types of thermoplastic polymers as a matrix material to be reinforced with continuous composite fibers. So it’s possible to vary fiber direction, volume ratio, and material density. In an example above, 30% of composite infill is enough to resist the required 400 bar pressure. Thus we can use less material and decrease costs. One can choose higher infill density or different plastics to satisfy the required loading conditions.”

The technology seems remarkably close to what Markforged developed previously. The startup now offers two reinforcing materials: Composite Carbon Fiber (CCF) and its new CBF. During 3D printing, one of these reinforcing fibers is combined with a plastic material in order to achieve parts that are lightweight and strong, with the desired chemical, thermal, and surface properties.

Manufacturing costs can also be reduced when using anisoprinting with CBF. As an example, a helicopter factory was in need of a mold for sheet metal forming, and the die needed to be able to bear 400 bar pressure. The lifespan of plywood, which is traditionally used, would be too short, but a metal die would cost too much.

According to Anisoprint, “The best option to extend a lifespan and reduce costs is to print a die with continuous composite fiber.”

The startup’s partner, Innovax, printed three dies from different materials – ULTEM, PETG + CCF, and PETG + CBF – on the Composer, and found that using Anisoprint’s materials helped lower costs, while at the same time increasing the strength and durability of the die.

According to Composites Manufacturing, basalt fiber is formed from melted and drawn basalt rock, which covers almost one-third of the earth’s surface. Basalt furnaces are heated to about 1,500° Celsius, and the rock is melted before being drawn through platinum/rhodium bushings to form fibers. While leaving the furnace, these fibers are treated with sizing, which prepares them to be used in downstream applications, and for binding with resin systems.

Basalt also has a unique feature: radio transparency. It’s a great option for non-conductive elements, as parts made with CBF don’t alter the amplitude and phase of radio-frequency electromagnetic waves that are transmitted through it too much.

Stamp

The parts Anisoprint can make with its CBF and CCF materials can be used in areas that require lightweight but high strength parts, such as brackets, fittings, orthoses, and stamps. Customers with Anisoprint Composer 3D printers can now purchase the startup’s new Composite Basalt Fiber on its website.

We haven’t written a lot about Anisoprint in the past, but the startup’s work certainly speaks for itself. In 2018, Russian para-athlete diver Dmitry Pavlenko called on the startup and Moscow Polytechnic University to help him develop a special lever to control the two-way valve on his vest that discharges and feeds him air; using this 3D printed lever, Pavlenko set a new eHandicap world record for deep sea diving. Earlier this month, Anisoprint teamed up with the makers of Magigoo to make thermoplastics easier to work with in order to achieve more durable components.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source/Images: Anisoprint]

Share this Article


Recent News

Liquid Metal 3D Printing Sector Emerges with Fluent Metal’s $5.5M Investment

3DPOD Episode 191: Amy Alexander, 3D Printing at the Mayo Clinic



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 190: Generative Design for 3D Printing with Novineer CEO Ali Tamijani

Ali Tamijani, a professor in the Department of Aerospace Engineering at Embry-Riddle Aeronautical University, has an extensive background in composites, tool pathing, and the development of functional 3D printed parts,...

Featured

3DPOD Episode 189: AMUG President Shannon VanDeren

Shannon VanDeren is a consultant in the 3D printing industry, focusing on implementation and integration for her company, Layered Manufacturing and Consulting. For nearly ten years, she has been involved...

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry

Clare DiFazio’s journey into the 3D printing industry was serendipitous, yet her involvement at critical moments has significantly influenced the sector. Her position as Head of Marketing & Product Strategy...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...