Russian Amputee Uses 3D Printed Lever to Set New World Record in Deep Sea Diving

Share this Article

3D printing is often called upon to help create assistive devices and prosthetics, so that people with disabilities and amputated limbs can still participate in the activities they enjoy. Earlier this month, a Russian para-athlete diver named Dmitry Pavlenko, who lost both his arms and his legs in a grenade explosion while in the military, set a new world record for deep sea diving, and 3D printing helped him do it.

In 2013, Philippe Croizon dove to a record-setting depth of 33 meters. In a project he titled “Challenging the Depth,” Pavlenko has beaten him by seven meters, establishing the new record for the eHandicap World Records (eHWR) as 40 meters.

“I am very happy to announce that the eHandicap World Records Experts Committee has approved Mr. Pavlenko’s record. The decision was taken unanimously,” said Alian Amar, the head of the eHWR expert group. “On behalf of the entire eHandicap World Records team, I warmly congratulate him and all the people around him for preparing the challenge and helping him succeed.”

Divers rely on special vests to dive to depth – the vest has a two-way valve that discharges and feeds air to the diver, while air circulation in the vest allows the diver to immerse themselves in, and emerge from, the water. Typically, divers use their fingers to control this buoyancy system with a lever, which can obviously not be done for divers like Pavlenko with amputated limbs.

The goal of the year-long project was to show that disabilities don’t have to be obstacles to achieving your goals. Previously, Pavlenko used a homemade lever to control the valve, which had become problematic, and there aren’t any companies producing special levers for amputees.

So he called on Anisoprint, a startup that developed a new technology for 3D printing products out of high-strength composite materials, and students from the Moscow Polytechnic University, to help him develop a new lever specifically tailored to his physical capabilities.

A hackathon was held at the university, so student teams could come up with ideas to improve Pavlenko’s buoyancy lever. Students Stanislav Shvydkin and Evgeniy Novikov proposed the use of 3D printing, due to its low cost and fast speed, and, according to the university, “rejected assembled structures, because a monolithic manufacture is more reliable, while it is feasible to change individual parameters in the CAD settings of the model.”

Several concepts were discussed, and while the hackathon jury preferred other products, Novikov and Shvydkin’s team continued to improve upon the 3D printable lever, and it was eventually selected as the final product idea. After some trial and error, a few 3D device models were developed, which resulted in four 3D printed prototypes made with FFF technology and ABS plastic; one of these was 3D printed on the startup’s Composer 3D printer.

“During the testing of the lever, made of the ABS plastic, the emergency load resulted in the breakdown of the device,” said Pavel Petrov, the head of the university’s Materials Processing by Pressure and Additive Technologies department. “The spare lever withstood the load but proved inconvenient for Dmitriy during his independent immersing to a big depth and simulating the exercise on buoyancy. Since the shape of the first lever has fitted Dmitriy’s anatomy ideally, it was repaired in the ‘field’ conditions, and it was exactly with it that the world record has been set.”

While the prototype levers are stronger than usual, thanks to 3D printing, the university explained that the material unfortunately displays different behavior, “depending on the direction of the load impact.”

“We decided to use this property as an advantage and to change the direction of the grid structure of the lever,” explained Novikov. “Since we have an opportunity to receive a product with high durability, it is possible to neglect the durability of the structure itself by reducing the cross-sectional area. Small lever has a low hydrodynamic resistance, and that is made up for by the reliability of the material. The load of 30 H was simulated in the program complex ‘Inventor’, and the structure proved good. Owing to the chosen technology we saved on the material, leaving a large margin of the product’s durability.”

Pavlenko chose the final 3D printed lever from the four prototypes, and on May 7th, completed an independent dive to the depth of 40 meters in the Red Sea. The next day, he sent the report of his dive to the international eHWR organization, which reviews achievements in non-Olympic sports by disabled athletes.

Now that he’s broken a world record, Pavlenko is planning to set a new one in Russia this summer. His team will help him achieve this new goal by developing a brand new buoyancy lever.

To see Pavlenko’s record-breaking dive for yourself, check out the video below:

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Moscow Polytechnic University]

 

Share this Article


Recent News

3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners

3D Printing Contract Manufacturer Endeavor 3D Achieves ITAR Status



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Würth Additive White Paper Explains the Synergy Between AM & Digital Inventories

In the latest Additive Manufacturing (AM) Research white paper, co-produced with Würth Additive Group (WAG), AM Research and WAG describe the emergence of the market for digital inventory platforms, as...

Artec 3D Releases Two New 3D Scanners at IMTS 2024

Artec 3D, the US-Luxembourg original equipment manufacturer (OEM) of high-resolution 3D scanners, has released two new products at the International Manufacturing Technology Show (IMTS) in Chicago (September 9-14). First off,...

3D Printing Webinar and Event Roundup: September 8, 2024

In this month’s first 3D Printing Webinar and Event Roundup, things are picking up! There are multiple in-person events this week, including the TETS Symposium, Additive Manufacturing in Medicine, a...

Sponsored

The Impact of IMTS on Big 3D Printing

From September 9-14, IMTS 2024 – The International Manufacturing Technology Show takes place at McCormick Place in Chicago, and celebrates the 10th anniversary of an audacious team, including Oak Ridge...