Researchers are mixing up the macro- and the micro- in their latest study, designed to expand the limits of 3D printing with glass. In ‘Three-dimensional laser printing of macroscale glass objects at a micro-scale resolution,’ the authors explain how they created macro-scale 3D objects in glass at a micro-scale resolution—hoping for success which has so far never been attained in two decades of research and effort in femtosecond laser induced chemical etching (FLICE).
The researchers were able to 3D print macro-scale glass objects at heights up to ~3.8 cm with a well-balanced (i.e., lateral vs longitudinal) spatial resolution of ~20 μm:
“The remarkable accomplishment is achieved by revealing an unexplored regime in the interaction of ultrafast laser pulses with fused silica which results in aberration free focusing of the laser pulses deeply inside fused silica,” state the researchers.
They began by ‘loosely focusing’ laser pulses into the silica, etching multiple lines organized into two different grids for both X and Y directions.
The research team noted that their cross section of lines showed an almost completely circular shape. The lines were insensitive to all the following: scan speed, focal position depth, laser writing direction.
“The difference is that with an increasing scan speed, the color in the cross section captured under the microscope in a reflective mode becomes lighter, indicating that a weaker modification of fused silica will be generated with the decrease of the irradiation dose at the increasing scan speed,” explained the authors.
After eliminating nanogratings in the fused silica, they could 3D print with worrying about polarizing the writing laser beam ‘in real time.’ The authors states that this allowed them to simply beam steering in the printing system, making the entire process easier and ‘more robust.’
In the images below, you can get a better understanding of the successes in their work as the authors created the Einstein head with all his ‘fine features’ visible—even the eyelids.
“It proves that the entire sculpture is printed with a decent fabrication resolution from top to the bottom,” said the authors.
The statue of Confucius is extremely detailed also, with an impressively smooth appearance, although this could be further improved with post annealing or laser polishing.
The air turbine includes moveable parts that were printed in the glass, eliminating any need for assembly, and illustrated below.
“Further improvement on the printing efficiency will be done in the near future by combining a 2D galvo scanner with the 2D motion stage. This design will allow both a high printing speed and a large printing area. The novel 3D glass printing technique is established based on two unconventional characteristics in the interaction of loosely focused picosecond laser pulses with fused silica, namely, the depth-independent aberration-free focusing and the elimination of the self-organized nanograting,” concluded the researchers.
“The physical mechanisms behind these interesting effects have not yet been clarified. We stress that the interaction of ultrafast laser pulses with transparent media under the loose focusing condition is a largely unexplored area of research, which shall inspire significant interest for further investigations. The high-resolution 3D printing of macro-scale objects in glass is expected to have implications in the fields of photonics, microfluidics, and high-precision mechanics.”
The great thing about 3D printing and all the accompanying techniques requiring infinite choices in hardware, software, and materials is that there is always something new to try—and there is always lots to talk about, whether you are a researcher, student, designer, engineer, or one of the many other types of users enthusiastic about 3D design and printing. Fabrication with glass is garnering growing interest, from experimentation with works of art, to metallic glass, to carbohydrate glass. Those are just a few examples, with macro-scale objects taking such studies to a new level of complexity.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: Three-dimensional laser printing of macroscale glass objects at a micro-scale resolution]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Metal Wire 3D Printer OEM ValCUN Announces Plans for 2025 Expansion
ValCUN, a Belgian original equipment manufacturer (OEM) of wire-based metal additive manufacturing (AM) hardware, has announced that the company has entered the next phase of its growth trajectory, making key...
APWORKS Expands Scalmalloy 3D Printing with Farsoon and CNPC Partnerships
In the lead up to Formnext 2024, Airbus subsidiary APWORKS has teamed up with Farsoon Technologies and CNPC Powder to expand the production and application of Scalmalloy, APWORKS’ high-strength, corrosion-resistant...
3D Printer OEM Axtra3D Raises Nearly $10M in Series A
Axtra3D, an original equipment manufacturer (OEM) of 3D printers leveraging the company’s patented Hybrid Photosynthesis (HPS) technology, has received another $4.5 million in Series A financing, bringing its total Series...
Caracol AM to Launch its First Metal 3D Printer at Formnext 2024
Caracol AM, a US-Italian original equipment manufacturer (OEM) of large-format additive manufacturing (AM) systems, has announced the launch of the company’s first metal printer, Vipra AM. A directed energy deposition...