Works of Art By Tobias Klein Explore the Relationship Between Glass and 3D Printing

Inkbit

Share this Article

The original deer bone and the glass cast.

Tobias Klein is an artist and architect who, in 2017, spent time as an Artist in Residence at the Pilchuck Glass School. During his time at the school, he developed two works of art that explored the relationship between three different methods of fabrication: glassblowing, glass casting and 3D printing.

“In order to explore this relationship I planned two lines of inquiry into glassblowing and glass casting,” Klein says. “Additionally, I set up a dialogue between the materials and processes used in the resulting objects and examined the advantages and restrictions occurring in the translation between digital and traditional methods. Therefore, the artworks would retain qualities of the different toolpaths and workflows. The traces of each process would allow me to identify synergies and new narratives between them.”

For the first work, titled Augmented Fauna, Klein began with the pelvic bone of a deer. First he employed a traditional method of casting to create a glass cast of the bone. He then 3D scanned the cast and created a 3D model which he digitally added on to, creating a digital “prosthesis.”

“I used the bridging software tool to sculpt a rough connecting volume between the areas and a series of interconnected tendril-like substructures, attached to the emerging mesh,” he explains. “Lastly, I applied topological surface mesh modifications (push, pull, extrude, subdivision modeling, etc.) to the resulting mesh, imitating the natural growth of the bone substrate.”

Klein then 3D printed the prosthesis, using PLA and a Flashforge 3D printer, and grafted it onto the glass cast to create a new geometry. He then used another 3D print of the prosthesis to create a cast using the 3D printed substrate instead of wax. He 3D printed the substrate with a honeycomb structure and a dense, precisely articulated outer shell, which allowed it to burn out more cleanly and create a better surface finish in the resulting glass cast. Klein then grafted the new glass cast onto the original deer bone, ending up with two geometrically identical sculptures that had been created using multiple technologies.

The second work is called Glass Mutations, which was formed using glassblowing and 3D printing and is based on cell mitosis. Klein employed the help of two glassblowers to create cell-like objects, which were then incorporated into larger installations using 3D printing.

“Deforming the glass surface by pulling it locally, we created geometrical anomalies that became attachment points and, ultimately, interfaces between the glass, 3D scan and printed object,” he explains. “They enable Cartesian recognition in the 3D scan and, later in the assembly of print and glass, mechanically hold the 3D-printed elements in tension…

“Glass Mutations is not a work centered around the geometric complexity of glass and the imitation of the formal impossibilities of 3D printing. Glass Mutations is an amalgamate of glass volumes held in a larger organism-like construct through 3D-printed substrates. Differently from the augmentation experiment—Augmented Fauna—the new objects are not static and conclusive in themselves, but rather suspended in an arrangement that can only exist in a 3D-scanned state of sublimation. This work consists of the physical separation of the cellular glass volumes from one another and the 3D-printed form interacting with these single objects to form an ecosystem between the glass volumes. The elements are held together by digitally modeled, tendril-like structures, analogous to biological cell growth when forming multi-cellular higher-order organisms.”

Glass Mutations is a surreal, striking piece of work that resembles odd creatures or strange plants. It’s much more fantastical-looking than Augmented Fauna, which is more scientific in its approach. While glass can be directly 3D printed, Klein avoids that approach and instead explores the interplay between 3D printing and more traditional methods of glass crafting – and the results are quite stunning. You can read more about Klein’s work in his paper “Augmented Fauna and Glass Mutations: A Dialogue Between Material and Technique in Glassblowing and 3D Printing.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Tobias Klein]

 

Share this Article


Recent News

Golf Pro Rickie Fowler Swings a Custom 3D Printed Golf Club

Multi-Metal 3D Printing Made Possible with Grid Logic’s Powder Deposition Tech



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

BEAMIT Expands Metal 3D Printing Fleet with GE Additive’s M Line

Already a customer of GE Additive, BEAMIT Group (BEAMIT), partly owned by SANDVIK, has taken on another metal 3D printer from the manufacturing giant. The latest is a Concept Laser M...

Featured

5 Ways Biden’s AM Forward Strategy Will Grow 3D Printing in the US

On May 6, 2022, President Joe Biden paid a visit to United Performance Metals in Hamilton, Ohio, where he announced the launch of a new federal 3D printing program dubbed...

Featured

6K Raises $102M in Series D Round Led by Koch Strategic Platforms

6K has just announced that it has closed the first tranche of its Series D round of financing, for $102 million. In all, the company expects to raise a total...

Sponsored

How Intelligent Automation and Networking of 3D Printing and Post-processing Increase Productivity

The market for Additive Manufacturing (AM) processes continues to grow and will even fivefold by 2030, according to SmarTech Analysis. More and more companies are taking a step towards the...