While the substantial benefits of 3D printing are discussed often in the progressive industrial and technological sectors today, the advantages they can have for just one business and their innovative endeavors are enormous. For a company like GH Induction Group, being able to 3D print with copper allows the Valencia, Spain-headquartered induction heating company to offer improved solutions for over 4,000 customers around the globe—many of whom may benefit from electromagnetic induction heating based on new production processes in electron beam melting (EBM).
Now, GH Induction Group is launching 3Dinductors, their new website (https://www.3dinductors.com) completely dedicated to their 3D printed coils and inductors, made of pure copper. While copper is a metal that offers a list of almost magical benefits due to its malleable texture and excellent ductility, accompanied by 3D printing technology, GH can produce inductors with a significantly increased service life (up to four times higher in some cases), higher density, and stronger mechanical properties. Coil spares are manufactured to be identical geometrically, and all parts are optimized for the high performance.
“This means reduced production costs per part and an improvement in treatment that cannot be achieved with current technology,” states the GH team in their most recent press release.
Critical attention to research and design, and ongoing development—as well as experimenting with other 3D printing processes that could not deliver like EBM does—has allowed GH to make serious breakthroughs for industrial companies engaged in manufacturing processes that require industrial induction heating technology. Applications such as automotive are a perfect example of industries that will benefit further from such techniques as part production cost is significantly reduced, production is much more efficient overall, and less inventory is required.
Although there are many different production methods for 3D printing and additive manufacturing methods today using metal, electron beam melting is the only method allowing GH to print pure copper alloy. To begin, the GH team can engineer their own 3D CAD designs, making changes as needed, and quickly. They are also able to control production and quality, preventing the number of hot spots, improving coil cooling as they transform inductor characteristics when necessary, and manufacture in a vacuum atmosphere to prevent porosity issues and rusting. 3D printed inductors can also be fixed just like conventionally-manufactured designs.
3D printing with metal has become popular for a wide range of industries because it offers the ability to manufacture extremely strong but lightweight parts with complex geometries. We have seen numerous other forays into 3D printing with copper too, as researchers create pure copper powder, construction engineers design 3D printed copper roofs, and others are dedicated to improving processes using this metal and others.
What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: GH Induction Group]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Printing Money Episode 23: Additive Manufacturing Deal Analysis with Alex Kingsbury
Episode 23 is here, and it’s chock-full. Alex Kingsbury, nLIGHT Market Development Manager and, not to mention, co-creator of the Printing Money podcast, re-joins Danny and the result is 60...
5 Stages to True Scale: Make Your Own Fleet of Metal 3D Printers
The additive manufacturing (AM) industry is now approaching true scale, where manufacturing is happening at volume. Critical parts, including millions of implants and thousands of rocket propulsion units, are being...
AML3D and Blue Forge Alliance Enter Manufacturing License Agreement for 3D Printed US Navy Parts
AML3D, the Australian original equipment manufacturer (OEM) of the ARCEMY wire arc additive manufacturing (WAAM) system, has announced a Manufacturing License Agreement (MLA) with Blue Forge Alliance (BFA), a neutral...
Accelerating the Domestic Industrial Base: ATDM Director Holley on Workforce Development for Advanced Manufacturing
At this point, it’s a familiar story: the US faces a critical lack of manufacturing workers in the next decade. Estimates are that, by 2032, the nation’s manufacturing labor pool...