Researchers from the Barrow Neurological Institute in Phoenix, Arizona, came together recently to author ‘The Barrow Biomimetic Spine: Face, Content, and Construct Validity of a 3D-Printed Spine Model for Freehand and Minimally Invasive Pedicle Screw Insertion,’ exploring the use of a new surgical training platform.
For the study, five models were examined for use in training with simulation of both freehand and percutaneous pedicle screw placement. Three of them were designated for freehand pedicle screw training (models A-C) and two for MIS pedicle screw training (models D and E), with all models evaluated and then scored by spine surgeons.
As in so many other fields and industries, 3D printing also brings myriad benefits to medicine and specifically, the world of medical models. They can be made easily, affordably, and quickly. 3D printed medical and surgical models can also be accompanied by inherent haptic feedback, which is often not available with computer based surgical models. The authors point out that while 3D printing has been ‘received enthusiastically by several neurosurgical subspecialties,’ there has been a ‘deficit of research’ into its use for both simulation and training practices.
With the inception of the 3D printed Barrow Biomimetic Spine model, the team hopes to fill this gap in training with an affordable and anatomically correct device.
“This model has been demonstrated in previous studies to provide high-fidelity gross anatomy, fluoroscopic anatomy, biomechanical performance of pedicle screws, and range of motion for short spinal segments,” state the researchers. “These properties are prerequisites for any high-fidelity training model of pedicle screw insertion, one of the key surgical skills required of any spine surgeon.”
All models were created with Meshmixer software, imported back into Simplify3D software, and then 3D printed on a FlashForge Creator Pro. Affordability is substantial in the fabrication of these models too, which cost around $50-$70. Testing was performed in random order, and directly afterward, each surgeon completed a survey regarding their thoughts on face, content, and construct validities of the models.
Model C was evaluated overall to have the highest scores in all areas out of the five models; in fact, the surgeons gave that particular model ‘nearly perfect scores’ in the areas of content and construct validity. Model D was given the highest scores in the areas of face, content, and construct validity, although surgeons complained that the soft tissue material was not realistic to work with.
“Since the writing of this article, new work has begun on creating a more realistic soft tissue and operating room environment in hopes of increasing the face validity of these models,” states the research team. “We have also expanded the models to include synthetic thecal sacs and electrically conductive nerve roots. Models of the cervical spine are also under development and include synthetic vertebral arteries in addition to the bony and ligamentous tissue of the spinal column and synthetic thecal sac.”
The team says that they can now use data from the study as a baseline and develop more improved 3D printed models. They state that the models are getting regular use by the residents, from the junior to senior level.
“Our findings have enabled the further development of numerous surgical spine models that are increasingly used by neurosurgery residents interested in improving their surgical skills outside of the operating room. Models like these are likely to become more important to residency and fellowship training programs in the new era of work-hour restrictions,” concluded the researchers.
“With the introduction of the 80-hour resident work week, improvement of off-site tools for resident education are in increasing demand. In neurosurgical practice, 3D printed models for simulation of spinal procedures hold great promise. The Barrow Biomimetic Spine, with incorporated vascularization, improves on existing synthetic spinal models in face, content, and construct validation measures.”
Surgical models and guides have been used in countless other training exercises and surgeries too, including knee replacements, reconstructive jaw surgery, and even shoulder surgeries and hip surgeries. Both patients and their families can also benefit from medical models in becoming educated about the condition. Find out more about use of 3D printing in medical models for the biomimetic spine here.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Webinar and Event Roundup: November 10, 2024
We’ve got another busy week ahead of webinars and events around the world! There are multiple open houses and conferences, advanced AM training, a 3D printer launch event, our own...
Luxembourg’s AM 4 AM Lands €1.3M for 3D Printing Powder Push
Amid a surge in demand for high-performance metal powders for 3D printing, Luxembourg-based developer of 3D printing materials AM 4 AM closed a €1.3 million seed round to expand its production...
3D Printing Webinar and Event Roundup: October 27, 2024
This week, Stratasys and Würth Additive Group continue their tours, and ICAM 2024 takes places in Atlanta, Georgia. Other offerings include an AM Symposium, webinars about 3D printing dental implants...
3D Printing Webinar and Event Roundup: October 20, 2024
It’s another packed week of 3D printing webinars and events, focused on topics from industrial AM and investment casting to ceramics, customized medical solutions, quality and regulatory compliance, AM use...