Under contract with the European Space Agency, the Athlone Institute of Technology (AIT) will be creating a new, large-scale 3D printer capable of fabricating parts in a zero-gravity atmosphere. The innovative hardware will be used at the International Space Station (ISS) in connection with a European consortium to be known as ‘Project Imperial’ that includes Sonaca Group, BEEVERYCREATIVE, and OHB.
Experts in 3D printing, materials, and associated processes will be leading the consortium:
- Sean Lyons, Dean of Faculty of Engineering and Informatics
- Declan Devine, Director of the Materials Research Institute
- Dr Ian Major, Principal Investigator at the Materials Research Institute
The team of researchers involved with the consortium are tasked with the creation of a high-performance 3D printer (made of high strength, functional thermoplastics) which will then be tasked with making complex geometries even larger than its own frame.
“Traditionally, 3D printers are based around simple materials and applications. They might look the part but they’re not hard or strong enough to be fully functional. Using cutting-edge material science, we’re going to design components that can be modified or configured for printing in zero gravity conditions on board the International Space Station,” explained Dr. Sean Lyons.
“There are several applications for this technology, imagine a door handle breaks on the ISS, it’s not feasible to send a payload from France all the way to the International Space Station with a spare handle. Through Project Imperial, the astronauts on board the ISS will be able to print parts as and when they are required. They’ll also be able to print bespoke parts: say if an astronaut broke their arm and needed a cast plaster, they’ll have the capability to print it in space themselves in-situ.”
3D printing is still a mind blowing, exciting process—often even for the most experienced innovators. And although adding ‘in space’ to the equation takes us to another technological level, it is one that is becoming surprisingly commonplace too due to the benefits in self-sustainability while at a remote location, portability in hardware, software, and materials, and the opportunity to create parts on demand. Other 3D printers and bioprinters have come before the Project Imperial Concept, from companies like Tethers and Made in Space, but it sounds as if this consortium plans to make 3D printing in space a priority, and especially as the experts involved use an uplink connection to the ISS to understand operating constraints better.
“It’s not as simple as if the project was terrestrially-based. We obviously can’t go up to discuss our designs with the astronauts or train them how to use this technology in person,” said Dr. Lyons. “We’ll also have to ensure that the panels are multilingual because you have quite a diverse group on board the ISS.
“We’re delighted to be collaborating on such seminal research with the European Space Agency and our European partners Sonaca Group, BEEVERYCREATIVE and OHB. It’s an amazing opportunity to demonstrate exactly what we’re capable of and the breadth of skills and expertise on offer at our award-winning institute.”
The team at AIT will also be examining how 3D printing in zero gravity is beneficial; for instance, scaffolds for bioprinting could be fabricated in space and then brought back to Earth for use in surgical procedures on humans. Currently, the researchers suspect that such cell scaffolds would offer better performance medically if they were not made within ‘gravity constraints’ found on Earth.
Project Imperial is scheduled to operate for two years, with ‘payload deployment’ projected for 2021. The consortium expects that new technology produced via this space program will serve as an example of how 3D printing in space creates potential for extra-terrestrial manufacturing, along with new ways to maintain parts and habitats.
High-tech advancements continue to make space travel possible, along with continued activities for astronauts away from terra firma for extended periods of time at the International Space Station (ISS). Over the past few years, we have learned what it will take to colonize both the moon and Mars, along with catching up on the latest 3D printed tools astronauts have been fabricating, or cosmonauts bioprinting.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Image: Irish Tech News]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
CELLINK Bioprinter Enables Bioprinted Hair Follicles for Skin Regeneration and More
In a landmark achievement, researchers at Rensselaer Polytechnic Institute in New York have successfully 3D-printed hair follicles in lab-grown human skin tissue, marking a significant advancement in the field of...
Iowa Demolishes Its First 3D Printed Home
In May 2023, the city of Muscatine, Iowa embarked on an ambitious plan to construct 3D printed homes. The weekend before Thanksgiving, the first such home was demolished. This project,...
BICO’s Revival: A Fresh Era with Maria Forss at the Helm
Swedish biotech company BICO (STO: BICO) has been making waves in the industry recently. Ever since Maria Forss assumed the role of CEO in November 2023, the company seems to...
3D Printing Webinar and Event Roundup: November 26, 2023
Things are getting busy again in terms of 3D printing webinars and events! This week is the RSNA annual meeting, the World Manufacturing Forum, and more. HP is holding an...