3D Printing Hierarchical Porous Materials

Share this Article

Hierarchical porous materials are commonly found in nature and have numerous applications as well, such as catalytic supports, biological scaffolds and lightweight structures. 3D printing has allowed for the fabrication of porous materials in the forms of lattices, cellular structures and foams across multiple length scales. However, according to a group of researchers in a paper entitled “3D printing of sacrificial templates into hierarchical porous materials,” current approaches “do not allow for the fast manufacturing of bulk porous materials featuring pore sizes that span broadly from macroscopic dimensions down to the nanoscale.”

In the research paper, the authors describe how they developed ink formulations to enable 3D printing of hierarchical materials displaying porosity at the nano-, micro- and macro-scales.

“Here, we 3D print inks that consist of nanoemulsions and other microtemplates to produce complex-shaped hierarchical materials with controlled pores ranging from hundreds of nanometers to millimetres in size,” the researchers state. “The pore size of the resulting porous materials can be easily tuned through the selection of the printing path and the size of the pore templating building blocks. Submicron pores are generated from particle-stabilized nanoemulsions, whereas larger droplets or sacrificial polymer particles are used to create pores in a size range varying from 10 to 100 µm. Finally, the macroscopic complex shape and the large-scale cellular architecture of the hierarchical porous material is determined by the 3D printing process.”

The researchers formed stable nanodroplets through a two-step emulsification process. These nanodroplets are stable enough to be concentrated by ultracentrifugation and form a dense jammed template that can be directly converted into a nanoporous structure upon drying or sintering depending on the oil volatility.

“Because the nanoparticles form a dense layer on the surface of the precursor droplets, closed nanopores are often obtained after drying and sintering,” the researchers continue. “However, open pores can also form if the emulsions are slightly destabilized during processing to generate droplet surfaces that are only partially covered by particles. For the emulsions investigated in this work, we found that such slight destabilization is possible by replacing corn oil by decane as the dispersed phase. The ability to tune the process to generate either open or close porosity after sintering enables tailoring of the porous structure according to the properties required by the aimed application.”

Since the nano- and micro-porosity are generated from the self-assembly of templating droplets and particles within the ink, as opposed to the slow sequential depositing of material, the 3D printing process is simple and fast. Because they are susceptible to coalescence during ink preparation, the templating droplets need to be stabilized by particles that will later form the walls of the pores created upon drying and consolidation.

“The zwitterionic nature of the surfactant used to promote this stabilization mechanism allows for the use of particles with a variety of distinct chemistries,” the researchers conclude. “Moreover, the dried printed structure can be consolidated either chemically or via heat treatment, depending on the ink formulation. Combined with the complex shaping capabilities of 3D printing, these features make the process highly tunable and open several new possibilities for the design and digital fabrication of hierarchical porous materials for a variety of applications.”

Authors of the paper include Lauriane Alison, Stefano Menasce, Florian Bouville, Elena Tervoort, Iacopo Mattich, Allesandro Ofner and André R. Studart.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Facebook Comments

Share this Article


Related Articles

3D Printing Used to Create Holographic Color Prints for Enhanced Security

3D Nanoprinting Using Charged Aerosol Focusing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Optical Illusions at the Nanoscale

Cytosurge is a spin-off company from ETH Zurich, and it has become known for its FluidFM 3D printing technology, which was commercialized and made consumer-friendly via the FluidFM 3D printer. FluidFM...

University of Twente Researchers 3D Print Gold Microstructures Using LIFT Technique

Researchers at the University of Twente have developed a new laser printing technique that allows for the 3D printing of gold nanostructures, including complex overhanging structures. By pointing a very short...

Microlight3D Offers a New Kind of Microscale 3D Printing

For 15 years, Patrice Baldeck and Michel Bouriau led intense research and development at the Université Grenoble Alpes. They were working on a two-photon polymerization 3D printing process that would...

3D Printing Glass-Ceramics at the Nanoscale

Many methods are used to develop 3D printing materials, and the sources for new 3D printing materials are seemingly endless. In a study entitled “Additive Manufacturing of 3D Glass-Ceramics down...


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!