AMS Spring 2023

3D Printing Hierarchical Porous Materials

6K SmarTech

Share this Article

Hierarchical porous materials are commonly found in nature and have numerous applications as well, such as catalytic supports, biological scaffolds and lightweight structures. 3D printing has allowed for the fabrication of porous materials in the forms of lattices, cellular structures and foams across multiple length scales. However, according to a group of researchers in a paper entitled “3D printing of sacrificial templates into hierarchical porous materials,” current approaches “do not allow for the fast manufacturing of bulk porous materials featuring pore sizes that span broadly from macroscopic dimensions down to the nanoscale.”

In the research paper, the authors describe how they developed ink formulations to enable 3D printing of hierarchical materials displaying porosity at the nano-, micro- and macro-scales.

“Here, we 3D print inks that consist of nanoemulsions and other microtemplates to produce complex-shaped hierarchical materials with controlled pores ranging from hundreds of nanometers to millimetres in size,” the researchers state. “The pore size of the resulting porous materials can be easily tuned through the selection of the printing path and the size of the pore templating building blocks. Submicron pores are generated from particle-stabilized nanoemulsions, whereas larger droplets or sacrificial polymer particles are used to create pores in a size range varying from 10 to 100 µm. Finally, the macroscopic complex shape and the large-scale cellular architecture of the hierarchical porous material is determined by the 3D printing process.”

The researchers formed stable nanodroplets through a two-step emulsification process. These nanodroplets are stable enough to be concentrated by ultracentrifugation and form a dense jammed template that can be directly converted into a nanoporous structure upon drying or sintering depending on the oil volatility.

“Because the nanoparticles form a dense layer on the surface of the precursor droplets, closed nanopores are often obtained after drying and sintering,” the researchers continue. “However, open pores can also form if the emulsions are slightly destabilized during processing to generate droplet surfaces that are only partially covered by particles. For the emulsions investigated in this work, we found that such slight destabilization is possible by replacing corn oil by decane as the dispersed phase. The ability to tune the process to generate either open or close porosity after sintering enables tailoring of the porous structure according to the properties required by the aimed application.”

Since the nano- and micro-porosity are generated from the self-assembly of templating droplets and particles within the ink, as opposed to the slow sequential depositing of material, the 3D printing process is simple and fast. Because they are susceptible to coalescence during ink preparation, the templating droplets need to be stabilized by particles that will later form the walls of the pores created upon drying and consolidation.

“The zwitterionic nature of the surfactant used to promote this stabilization mechanism allows for the use of particles with a variety of distinct chemistries,” the researchers conclude. “Moreover, the dried printed structure can be consolidated either chemically or via heat treatment, depending on the ink formulation. Combined with the complex shaping capabilities of 3D printing, these features make the process highly tunable and open several new possibilities for the design and digital fabrication of hierarchical porous materials for a variety of applications.”

Authors of the paper include Lauriane Alison, Stefano Menasce, Florian Bouville, Elena Tervoort, Iacopo Mattich, Allesandro Ofner and André R. Studart.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Share this Article


Recent News

3D Printing News Unpeeled: Warhammer, AVIC and Pearson Lloyd

Fire at Icon’s House 3D Printing HQ Highlights Need for Decentralized Supply Chains



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Concrete Dreams: Let’s 3D Print Money, not Houses

I’m rather unsure about the potential of 3D printing houses. I know that it is the right thing for the press: additively manufacturing (AM) homes and solving the housing crisis...

How Can 3D Printing Alleviate the Construction Industry’s Social, Climate, and Environmental Challenges?

Global housing shortages, a lack of skilled workers, and the need to reach carbon neutrality by 2050—the construction industry faces a tripled-edged sword. Industry leaders must use their experience to...

3D Printing News Unpeeled: ICON, RAF, Renishaw and Stratasys

Stratasys gets a Victrex PAEK material for its 450MC system, a bunch of new colors of Ultem 9085, a flame retardant polycarbonate and more. The OpenAM software will also let...

Fleet of 3D Printers Begin Building Housing Community in Texas with Construction Giant Lennar Corp and ICON

As 2022 comes to an end, additive construction (AC) companies all over the world are announcing a flurry of upcoming projects. The most recent of these is also one of...