3D Printed Robotic Mesh Structures Controlled by Magnetic Fields

IMTS

Share this Article

Researchers at North Carolina State University have created a new kind of robot – one that floats on water and can be controlled with applied magnetic fields. These 3D printed flexible mesh structures can grab small objects and carry water droplets, allowing them to mimic creatures living on water surfaces. They can also potentially serve as tissue scaffolds for cell cultures.

“This research shows capabilities in the emerging field of combining 3D printing and soft robotics,” said Orlin Velev, S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State.

The research was published in a paper entitled “3D-Printed Silicone Soft Architectures with Programmed Magneto-Capillary Reconfiguration.” In the paper, the researchers describe how they made an ink from silicone microbeads, bound by liquid silicone and contained in water. This resulted in a “homocomposite thixotropic paste” that resembles toothpaste in that it can easily be squeezed through an aperture but then retain its shape once deposited.

The researchers then used a 3D printer to shape the paste into mesh-like patterns. The patterns were cured in an oven to create flexible silicone structures that can be stretched and collapsed by the application of magnetic fields.

“This self-reinforced paste allows us to create structures that are ultra-soft and flexible,” said Sangchul Roh, an NC State Ph.D. student in Velev’s lab.

“Embedding of iron carbonyl particles, which are widely available and have a high magnetization, allows us to impart a strong response to magnetic field gradients,” added Joseph Tracy, Professor of Materials Science and Engineering.

“The structures are also auxetic, which means that they can expand and contract in all directions,” Velev said. “With 3D printing, we can control the shape before and after the application of the magnetic field.”

The structures can also be used when floating on water, similar to insects such as water striders.

“Mimicking live tissues in the body is another possible application for these structures,” said Roh.

The researchers describe in the paper how they were able to create reconfigurable meshes, a structure that could grab a tiny ball of aluminum foil and a structure that could carry a single water droplet and then release it through the mesh on demand. How this worked involved the researchers turning on a magnetic field, which caused the mesh to contract towards the center and hold a droplet of water on its surface. When the magnetic field was turned off, the mesh stretched out to its full size again, letting the droplet fall through. This design could allow for the transportation of liquids and the option to mix them on demand.

“For now, this is an early stage proof-of-concept for a soft robotic actuator,” said Velev.

Authors of the paper include Sangchul Roh, Lilian B. Okello, Nuran Golbasi, Jameson P. Hankwitz, Jessica A.-C. Liu, Joseph B. Tracy and Orlin D. Velev.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: North Carolina State University]

 

Share this Article


Recent News

Liquid Metal 3D Printing Sector Emerges with Fluent Metal’s $5.5M Investment

3DPOD Episode 191: Amy Alexander, 3D Printing at the Mayo Clinic



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 190: Generative Design for 3D Printing with Novineer CEO Ali Tamijani

Ali Tamijani, a professor in the Department of Aerospace Engineering at Embry-Riddle Aeronautical University, has an extensive background in composites, tool pathing, and the development of functional 3D printed parts,...

Featured

3DPOD Episode 189: AMUG President Shannon VanDeren

Shannon VanDeren is a consultant in the 3D printing industry, focusing on implementation and integration for her company, Layered Manufacturing and Consulting. For nearly ten years, she has been involved...

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry

Clare DiFazio’s journey into the 3D printing industry was serendipitous, yet her involvement at critical moments has significantly influenced the sector. Her position as Head of Marketing & Product Strategy...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...