Clemson Researchers Use 3D Printing to Solve Pesky Battery Issues By Printing Ceramic Electrolyzers

IMTS

Share this Article

We’re all familiar with that highly inconvenient moment of finding out your phone battery is dead (or worse, that the charger cord or cube is no longer functional for some often, unknown reason) or that the electric car is running out of ‘juice.’ As progress in technology just continues to climb to higher levels, however, you may find that you can take control of battery power with 3D printing. And while that is not exactly a new concept, it is becoming even more realistic thanks to recent research from Clemson University.

A laser-based 3D printing process may be able to create energy—along with enormous amounts of storage. Jianhua “Joshua” Tong, associate professor of Materials Science and Engineering at Clemson, is behind the project, which streamlines the manufacturing of electrolyzers using devices made of ceramic material. Tong explains that their innovative devices could actually use hydrogen to harness and store solar—or even wind—energy and use it to power larger items like cars.

“Our success will mean we can provide sustainable, clean energy,” Tong said. “That is the fantastic part. We are taking 3D printing to the next level.”

This research involving 3D printing was performed at Clemson’s Department of Materials Science and Engineering, where Tong also worked with Hai Xiao, Kyle Brinkman and Fei Peng. Because manufacturing of ceramics for industrial use has historically been very expensive, their goal was to create a manufacturing process that is affordable and realistic for modern applications.

Their process makes use of some of the greatest benefits in 3D printing, including better savings on the bottom line and greater speed in production, mainly due to their bypassing the need for a furnace to produce the electrolyzer. This could be extremely useful in terms of making fuel, as well as offering new potential in the creation of other products such as smartphone batteries with the possibility to stay charged for several days. Considering most of us are running low on battery power by the end of the day (or even more quickly), such products could be a real boon to the smartphone/battery industry overall. Using protonic ceramic electrolyzer stacks the team can let hydrogen act as a fuel store for batteries. By sintering and depositing the different ceramics needed simultaneously the team can make these energy storage devices in a completely new way. This is yet another application where we can see 3D printing used to bring changes to batteries.

Jianhua “Joshua” Tong, left, and Ph.D. student Shenglong Mu work in their lab at Clemson University, where they are developing a new technology that combines 3D printing and laser processing. (Photo credit: Clemson University)

The researchers also found that 3D printing offered incredible ease in production because of the ability to create a 3D design that can be emailed to another individual or company getting ready to 3D print a component or prototype. 3D design also means that prototypes can be changed easily in digital fashion—rather than working with a middleman who must go back to the drawing board for most changes.

The use of 3D printing integrated with other processes such as electronics offers infinite opportunities for designers and engineers hoping to create more streamlined works for users around the world. Find out more about Materials Science & Engineering at Clemson here.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source: Design News]

Share this Article


Recent News

World’s Largest Polymer 3D Printer Unveiled by UMaine: Houses, Tools, Boats to Come

Changing the Landscape: 1Print Co-Founder Adam Friedman on His Unique Approach to 3D Printed Construction



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Profiling a Construction 3D Printing Pioneer: US Army Corps of Engineers’ Megan Kreiger

The world of construction 3D printing is still so new that the true experts can probably be counted on two hands. Among them is Megan Kreiger, Portfolio Manager of Additive...

Featured

US Army Corps of Engineers Taps Lincoln Electric & Eaton for Largest 3D Printed US Civil Works Part

The Soo Locks sit on the US-Canadian border, enabling maritime travel between Lake Superior and Lake Huron, from which ships can reach the rest of the Great Lakes. Crafts carrying...

Construction 3D Printing CEO Reflects on Being Female in Construction

Natalie Wadley, CEO of ChangeMaker3D, could hear the words of her daughter sitting next to her resounding in her head. “Mum, MUM, you’ve won!” Wadley had just won the prestigious...

1Print to Commercialize 3D Printed Coastal Resilience Solutions

1Print, a company that specializes in deploying additive construction (AC) for infrastructure projects, has entered an agreement with the University of Miami (UM) to accelerate commercialization of the SEAHIVE shoreline...