MIT Researchers Discuss the Evolution of Their Glass 3D Printer

Share this Article

Researchers at MIT were among the first to 3D print glass, creating the G3DP machine a few years ago to create intricate glass structures. Last year, they scaled up the project with G3DP2, a platform that enabled them to 3D print glass on an architectural scale. Now these researchers have documented their work on G3DP2 in a paper entitled “Additive Manufacturing of Transparent Glass Structures.

The researchers had two main goals in the development of G3DP2:

  • Develop an industrial-scale molten glass feedstock 3D printer by extending the research previously conducted at MIT, enhancing the material properties and range of products that could be produced.
  • Develop an architectural-scale 3D-printed glass structure to evaluate the practical capabilities of the new system in an industrial production.

The new platform, they explain, was designed as a two-part vertical assembly: an upper, stationary thermal module with a digitally integrated three-zone heating control system regulating glass flow and a lower, motion module with a four-axis CNC system that moves the print bed.

“In this architecture, the thermal energy applied to the heating system was decoupled from the mechanical load of the motion system,” the researchers state. “This allowed for improved durability of both systems through careful consideration of material properties and detailed analysis of constituent parts supporting each separate module. Still, critical focus was given to the print head itself, situated at the interface between the modules and requiring the highest thermal and mechanical performance from its material choice.”

The researchers describe the upgrades they made that turned G3DP into G3DP2, one of the fastest 3D printers in the world, independent of material. Their objectives were increased speed and scale as well as improved reliability and repeatability, and they achieved all four. Several tests were conducted, beginning with using pens to evaluate motion, then moving on to actual 3D printing. The researchers discuss how to understand and control the behavior of the 3D printed glass, as well as the specifications, engineering and control of the platform.

Once G3DP2 was completed, the researchers used it to 3D print three-meter-tall glass columns for the Lexus “Yet” exhibition at Milan Design Week 2017. The columns consisted of 15 unique 3D printed glass components that were assembled vertically with “thin silicone film joinery and steel post-tensioning systems to ensure vertical stability.” Each column contained a mobile LED light module set on a linear motion system, with the intersection of the moving light rays and the morphology of the glass structures creating a beautiful light show as well as a demonstration of the capabilities of MIT’s 3D glass printer.

“In the future, combining the advantages of this AM technology with the multitude of unique material properties of glass such as transparency, strength, and chemical stability, we may start to see new archetypes of multifunctional building blocks,” the researchers conclude. “Transparent and hollow-section glass tubes simultaneously act as an heating, ventilation, and air conditioning (HVAC) system, performing as structure and vasculatures at the same time at building scale, through which synthetic and biological mediums circulate and react to incoming sunlight and surrounding temperature, passively regulating the building while illuminating the interior space as if they were a dynamic stained glass—embodying the fundamental shift in the notion of glass in architecture from human centric toward a symbiosis between human, inhuman, and the built environment.”

Authors of the paper include Chikara Inamura, Michael Stern, Daniel Lizardo, Peter Houk and Neri Oxman.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

 

Share this Article


Recent News

Covestro Buys DSM Additive Manufacturing: Analysis and Implications for 3D Printing

Week One of Virtual IMTS Spark: 3D Printing in Education



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Interview with Sanjana Narayanan on Promoting 3D Printing and AM via Youth Webinar Series

In this interview, Sanjana Narayanan, Student Ambassador for Women in 3D Printing, explains the significance and role of the Youth Webinar series in the development and contributions to 3D printing....

3D Printing Functionally Graded Materials Gets an F

An exciting and potentially revolutionary slow-burn development in 3D printing is that of gradient materials (also called Functionally Graded Materials, or FGMs). With FGMs, we can mix materials in such...

3D Printing Webinar and Virtual Event Roundup, September 20, 2020

Buckle up, we’ve got a lot of webinars and online events to tell you about this week! Ceramics Expo Connect starts on Monday, which is the same day that IMTS...

3D Printing News Briefs, September 19, 2020: Relativity Space, Farsoon Technologies, Johnson & Johnson

In today’s 3D Printing News Briefs, the co-founder of Relativity Space is leaving his role of CTO, and Farsoon has delivered its largest order of plastic 3D printers. Finally, Johnson...


Shop

View our broad assortment of in house and third party products.