3D Printed Models Help Students Gain a Better Understanding of DNA Behavior

IMTS

Share this Article

In a paper entitled “Visualizing the Invisible: A Guide to Designing, Printing and Incorporating Dynamic 3D Molecular Models to Teach Structure-Function Relationships,” a group of researchers from the University of Nebraska discusses the importance of using three-dimensional models to help students understand critical biology and chemistry concepts. Teachers, the researchers point out, often rely on two-dimensional images to teach complex three-dimensional concepts, such as the structure of molecules, but students cannot fully grasp the concepts using only 2D images. Kits with 3D models exist for teaching purposes, but they “cannot handle the size and details of macromolecules.”

3D printing, however, allows instructors to create detailed custom models of molecules of any size.

“For example, protein models can be designed to relate enzyme active site structures to kinetic activity,” the researchers state. “Furthermore, instructors can use diverse printing materials and accessories to demonstrate molecular properties, dynamics, and interactions.”

In the paper, the researchers describe the creation of a 3D model-based lesson on DNA supercoiling for an undergraduate biology classroom. They selected this particular model so that students could “feel DNA relaxation and witness contortions resulting from twists in DNA.” They designed and 3D printed flexible plastic models with magnetic ends to mimic DNA supercoiling.

“We developed a Qualtrics-based interactive activity to help students use the models to classify supercoiled DNA, predict the effects of DNA wrapping around nucleosomes, and differentiate between topoisomerase activities,” the researchers explain.

An upper-level undergraduate biochemistry class was divided into small groups of two to three students to foster peer learning, and each group was provided with one model set. The models were also made available at a library resource center. Interactive questions required the students to measure and explore physical aspects of the models. It took the students about 50 minutes to complete the activity, which was interspersed with lecture and demonstration via a digital overhead.

In interviews following the activity, the students reported that the models helped them learn because “physically seeing it makes something abstract very real.” In a survey, 60 to 70 percent of students stated that the physical models made it easier to learn the material being taught.

The researchers go on to provide step by step instructions for creating 3D printed models for use in the classroom. They designed the models around student misconceptions, they explain, and the models were shown to be effective in clearing up those misconceptions. This study reaffirms what many researchers and educational professionals have learned – that 3D printed models are an excellent way to teach students of any age group. From preschoolers learning shapes and textures to college students learning about DNA supercoiling, having hands-on models helps to make concepts real and accessible. 3D printing is a cost-effective way to create those models, and it is capable of presenting detail in a way that other fabrication methods are not.

“Three-dimensional printing represents an emerging technology with significant potential to advance life-science education by allowing students to physically explore macromolecular structure-function relationships and observe molecular dynamics and interactions,” the researchers conclude. “As this technology develops, the cost, resolution, strength, material options, and convenience of 3DP will improve, making 3D models an even more accessible teaching tool.”

Authors of the paper include Michelle E. Howell, Karin van Dijk, Christine S. Booth,  Tomáš Helikar, Brian A. Couch and Rebecca L. Roston.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

3D Printing Webinar and Event Roundup: April 21, 2024

3D Printing News Briefs, April 20, 2024: Manufacturing 4.0 Consortium, Blow Molding, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Nylon 3D Printed Parts Made More Functional with Coatings & Colors

Parts 3D printed from polyamide (PA, Nylon) 12 using powder bed fusion (PBF) are a mainstay in the additive manufacturing (AM) industry. While post-finishing processes have improved the porosity of...

Featured

Profiling a Construction 3D Printing Pioneer: US Army Corps of Engineers’ Megan Kreiger

The world of construction 3D printing is still so new that the true experts can probably be counted on two hands. Among them is Megan Kreiger, Portfolio Manager of Additive...

GREENFILL3D 3D Prints Sustainable Interior Solutions for Stretch Ceilings

Polish startup GREENFILL3D has previously produced sustainable in-store displays, plant markers, and lamps using sustainable materials and desktop 3D printers. I appreciate GREENFILL3D for its use of low-cost material extrusion...

Featured

Formlabs’ New Form 4 3D Printers Are 2-5X Faster than Form 3+

Formlabs has announced a new addition to its line of stereolithography (SLA) printers for additive manufacturing (AM): the Form 4 and Form 4B. Coming several years after the firm’s previous...