Infill Creates a “Fingerprint” for Tracing 3D Printed Items Back to Their Sources

IMTS

Share this Article

In a new study led by the University at Buffalo entitled “PrinTracker: Fingerprinting 3D Printers Using Commodity Scanners,” researchers may have made a breakthrough in how to trace a 3D printed object to the printer on which it was made. It’s believed to be the first accurate method for doing so, and could be extremely valuable in identifying the origin of things like counterfeit products and 3D printed guns.

Wenyao Xu

“3D printing has many wonderful uses, but it’s also a counterfeiter’s dream. Even more concerning, it has the potential to make firearms more readily available to people who are not allowed to possess them,” said the study’s lead author Wenyao Xu, PhD, Associate Professor of Computer Science and Engineering in UB’s School of Engineering and Applied Sciences.

The method centers on infill, the core of the 3D print that is rarely seen but that has a big impact on a part’s strength and weight. Many different patterns can be selected for infill, but those patterns are typically pretty uniform from printer to printer – right? Not so, in fact. Depending on the 3D printer, the dimensions of the infill can vary from 5 to 10 percent from the size chosen – and each printer is unique in the infill it generates. Therefore, every printer essentially has a unique fingerprint.

“3D printers are built to be the same,” said Xu. “But there are slight variations in their hardware created during the manufacturing process that lead to unique, inevitable and unchangeable patterns in every object they print.”

To test their model, the researchers used 14 common 3D printers to print five door keys each. 10 of the printers were FDM, and four were SLA. With an inkjet scanner, they created digital models of each key. They then enhanced and filtered each image and identified elements of the infill pattern. An algorithm was developed to align and calculate the variations of each key to authenticate the fingerprint. This created a fingerprint database for each of the 14 3D printers.

The researchers were able to match the key to the 3D printer it came from, using its fingerprint, 99.8% of the time. 10 months later, they ran a new series of tests to see if additional use of the 3D printers would change the results. It did not – the results were the same. The researchers also ran tests on keys that had been damaged in some way to obscure their identity. In these cases, PrinTracker was accurate 92% of the time.

According to Xu, PrinTracker can be used to trace any 3D printed object back to its source. He compares the technology to that used by law enforcement agencies and 2D printer companies to identify the source of paper documents.

“We’ve demonstrated that PrinTracker is an effective, robust and reliable way that law enforcement agencies, as well as businesses concerned about intellectual property, can trace the origin of 3D-printed goods,” Xu said.

The study will be presented in Toronto at the Association for Computing Machinery’s Conference on Computer and Communications Security, which runs from October 15th to 19th.

Authors of the paper include Zhengxiong Li, Aditya Singh Rathore, Chen Song, Sheng Wei, Yanzhi Wang and Wenyao Xu.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source/Images: University at Buffalo]

Share this Article


Recent News

3D Printing News Briefs, April 27, 2024: Research, Digital Dentistry, Cycling, & More

3D Printing News Unpeeled: Asahi Kasei Enters 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Further Understanding of 3D Printing Design at ADDITIV Design World

ADDITIV is back once again! This time, the virtual platform for additive manufacturing will be holding the first-ever edition of ADDITIV Design World on May 23rd from 9:00 AM –...

3D Printer Maker EVO-tech Reborn as NEVO3D — Once More With Feeling

EVO-tech was a 3D printing service and original equipment manufacturer established in 2013 and based in Schörfling am Attersee, Austria. The company produced high-quality material extrusion systems featuring linear bearings,...

3D Systems Brings 3D Printed PEEK Cranial Implant to the U.S. with FDA Clearance

For more than 10 years, 3D Systems (NYSE:DDD) has worked hand-in-hand with surgeons to plan over 150,000 patient-specific cases, and develop more than two million instruments and implants from its...

Sponsored

CDFAM Returns to Berlin for Second Annual Symposium

The second CDFAM Computational Design Symposium is scheduled for May 7-8, 2024, in Berlin, and will convene leading experts in computational design across all scales. Building upon the first event...