Optimizing the Properties of Recycled 3D Printing Materials

Share this Article

Top: virgin PLA, bottom: recycled PLA

In an attempt to mitigate the environmental impact of 3D printing, several organizations have taken to creating recycled filament, made not only from failed prints but from water bottles and other garbage. Inexpensive filament extruders are also available to allow makers to make their own filament from recyclable materials. Not only does recycled filament help the environment, but it also helps 3D printer users to save money and be more self-sufficient, making the technology more viable in remote communities.

3D printer manufacturer re:3D has been working on making their Gigabot 3D printer capable of printing with recycled materials, for the purpose of helping those in remote communities to become more self-sufficient. In a paper entitled “Fused Particle Fabrication 3-D Printing: Recycled Materials’ Optimization and Mechanical Properties,” a team of researchers used an open source prototype Gigabot X 3D printer to test and optimize recycled 3D printing materials.

In the study, virgin PLA pellets and prints were analyzed and compared to four recycled polymers: PLA, ABS, PET and PP.

Top: Recycled ABS, bottom: recycled PET

“The size characteristics of the various materials were quantified using digital image processing,” the researchers explain. “Then, power and nozzle velocity matrices were used to optimize the print speed, and a print test was used to maximize the output for a two-temperature stage extruder for a given polymer feedstock. ASTMtype 4 tensile tests were used to determine the mechanical properties of each plastic when they were printed with a particle drive extruder system and were compared with filament printing.”

The Gigabot X showed itself to be able to print materials 6.5 to 13 times faster than conventional 3D printers depending on the material, with no significant reduction in mechanical properties. This is significant because each time a polymer is heated and extruded, whether during the filament creation process or the 3D printing process, its mechanical properties are degraded. One option to reduce degradation, the researchers explain, is to 3D print directly from scraps, or particles, of recycled plastic.

The Gigabot X was also capable of 3D printing with a wide range of particle sizes and distributions, which opens up more possibilities for the use of materials other than pellets and filament. The processing of the materials was minimal – they only needed to be cleaned and ground or shredded. Mechanical testing using tensile strength was performed and showed that the polymer properties were not degraded; however, the researchers suggest that further mechanical testing should be performed to test properties such as compression, impact resistance, fracture toughness, creep testing, fatigue testing, and flexural strength.

There are a few limitations with the prototype Gigabot X, including lower than normal resolution in the XY plane. Due to the high heat transfer rates from the large contact area of the printer’s hotend, parts that are less than 20 mm x 20 mm cannot be 3D printed reliably. The Gigabot X also currently lacks a part cooling system, so it is limited in the geometries of parts that it can print. However, it is still a prototype, and so can be considered a work in progress.

Authors of the paper include Aubrey L. Woern, Dennis J. Byard, Robert B. Oakley, Matthew J. Fiedler, Samantha L. Snabes and Joshua M. Pearce.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Facebook Comments

Share this Article


Related Articles

Recycled, 3D Knitted Shoe Company Rothy’s Announces New Funding

10 Eco-Friendly 3D Printing Stories From 2018



Categories

3D Design

3D Printed Architecture

3D Printed Art

3D printed chicken


You May Also Like

Eco-Friendly 3D Printing Using an Ecostruder, Recycled E-Waste and Solar Power

Electronic devices are a part of daily life for people across the world – laptops, smart phones, tablets, fitness bands, etc. They’re wonderful to have for many reasons, but none...

Cutting 3D Printing Costs with an Open Source Material Pelletizer

Good filament can be pricey, although the polymers the filament is made from aren’t that expensive. That’s the opening observation of a paper entitled “3-D Printable Polymer Pelletizer Chopper for...

Michigan Tech Researchers Recycle Wood Furniture Waste into Composite 3D Printing Material

From artwork, instruments, and boats to gear shift knobs, cell phone accessories, and even 3D printers, wood has been used often as a 3D printing material. It’s a valuable renewable...

Technical Possibilities for Making 3D Printed Engineering Components Based on Reused Polypropylene

From bacteria and metamaterials to shape-shifting and support-free, the innovative researchers at TU Delft have worked with a wide variety of 3D printing materials over the years. Now, their focus...


Training


Shop

View our broad assortment of in house and third party products.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!