Medical and Aerospace 3D Printed Parts Could Be Secured by Embedded QR Codes

Share this Article

Experts have predicted that by 2021, 75 percent of new commercial and military aircraft will contain 3D printed parts. That makes it crucial that manufacturers find a foolproof way to ensure that 3D printed components are genuine. Counterfeit parts do a lot more than steal intellectual property – they can be dangerous or even deliberately sabotaged. Much research has gone into coming up with ways to make sure that counterfeit parts can be identified, and that genuine parts can be assured to be genuine. A group of researchers at the NYU Tandon School of Engineering have now come up with a new way to protect the integrity of parts by converting QR codes, bar codes, and other passive tags into 3D features hidden inside 3D printed objects.

In the paper, entitled “Embedding Tracking Codes in Additive Manufactured Parts for Product Authentication,” the researchers explain how they were able to embed the codes in a way that they would neither compromise the integrity of the 3D printed object or be apparent to counterfeiters attempting to reverse engineer the part. The team developed a way to “explode” a QR code within a CAD file so that it presents several false faces to a scanning device. Only a trusted user or printer would know the correct orientation for the scanner to capture the actual QR code.

“By converting a relatively simple two-dimensional tag into a complex 3D feature comprising hundreds of tiny elements dispersed within the printed component, we are able to create many ‘false faces,’ which lets us hide the correct QR code from anyone who doesn’t know where to look,” said Nikhil Gupta, Associate Professor of Mechanical Engineering.

The researchers tested different configurations, including distributing the code across just three layers of the object or fragmenting it into 500 tiny elements. They used multiple 3D printing technologies and materials to do so. According to lead author and doctoral student Fei Chen, the team then stress-tested the parts and found that the embedded features had negligible effect on the structural integrity of the parts.

“To create typical QR code contrasts that are readable to a scanner you have to embed the equivalent of empty spaces,” she said. “But by dispersing these tiny flaws over many layers we were able to keep the part’s strength well within acceptable limits.”

Other members of the team explored threat vectors to determine which sectors of the additive manufacturing industry are best served by this new technology. It doesn’t necessarily need to be applied to every 3D printed part, but certain applications could benefit greatly from it, depending on how critical the parts are to the operation of, say, an airplane.

“You need to be cost efficient and match the solution to the threat level,” said Gupta. “Our innovation is particularly useful for sophisticated, high-risk sectors such as biomedical and aerospace, in which the quality of even the smallest part is critical.”

Authors of the paper include Fei Chen, Yuxi Luo, Nektarios Georgios Tsoutsos, Michail Maniatakos, Khaled Shahin and Nikhil Gupta.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

 

Share this Article


Recent News

What is Metrology Part 21 – Getting Started with Processing

Analyzing & Solving 3D Printing Issues with Microfluidics



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Multimaterial 3D Printing Filaments for Optoelectronics

Authors Gabriel Loke, Rodger Yuan, Michael Rein, Tural Khudiyev, Yash Jain, John Joannopoulous, and Yoel Fink have all come together to explore new filament options, with their findings outlined in...

Germany: Two-Photon Polymerization 3D Printing with a Microchip Laser

Laser additive manufacturing technology is growing more prevalent around the world for industrial uses, leading researchers to investigate further in relation to polymerization, with findings outlined in the recently published...

3D Printing Polymer-Bonded Magnets Rival Conventional Counterparts

Authors Alan Shen, Xiaoguang Peng, Callum P. Bailey, Sameh Dardona, and W.K Anson explore new techniques in ‘3Dprinting of polymer-bonded magnets from highly concentrated, plate-like particle suspension.’ While magnets have...

South Africa: FEA & Compression Testing of 3D Printed Models

Researchers D.W. Abbot, D.V.V. Kallon, C. Anghel, and P. Dube delve into complex analysis and testing in the ‘Finite Element Analysis of 3D Printed Model via Compression Tests.’ For this...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!