Student Uses Nanoscribe Technology to Investigate 3D Printed Microstructures for Optics in Thesis

Share this Article

3D printer for the fabrication of nano- and microstructures: Photonic Professional GT

German 3D printer manufacturer Nanoscribe specializes in 3D micro and nano printing, and its Photonic Professional GT 3D printer, which uses a two-photon polymerization process, was used in two life sciences studies this year that show the true practicality of 3D printed micro-objects. For simple designs, Nanoscribe’s technology can fabricate structures with features even smaller than a micron on the 300 nm scale.

Two years ago, Leiden University in the Netherlands purchased a Nanoscribe 3D printer, which the university’s Quantum Optics department is currently interested in using to create and investigate complex optical 3D structures. This makes it necessary to look into any existing issues with using Nanoscribe’s technology to 3D print optical objects.

Leiden student Evert Stolte recently completed a thesis, titled “Characterisation of 3D-printed micro-structures for optics,” for a Bachelor of Science degree in Physics. Stolte’s thesis, which was supervised by Martin van Exter, investigated 3D printing optical micro-structures with the university’s Nanoscribe 3D printer.

The abstract reads, “This research explores the possibility of producing acrylic micro-structures for optical purposes with a Nanoscribe 3D-printer, which uses two-photon polymerisation. More specifically, it tries to characterise the effect of inherent flaws of the 3D-printing production method on far-field transmission optics. The studied samples are gratings with different periodicities ranging from 4 to 1 mm and samples with flat and tilted surfaces. The gratings show optical effects from variations in displacement, duty-cycle and height, and scattering effects from writing lines. Steps are taken towards 3D-printing multi-grating layer samples, with the end goal of producing a woodpile structure and other multi-layer photonic crystals.”

Optical Microscope images of 3D-printed gratings.

The primary goal of Stolte’s research was to characterize the possible band limitations, for optical purposes, of structures 3D printed using Nanoscribe’s technology, beginning with flat surfaces and gratings, such as those consisting of parallel bars.

“Especially for larger, more mesoscopic structures, parts may be flat. However, this can be problematic because of the discrete nature of 3D-printing,” Stolte wrote.

The thesis also notes that the more “interesting structures” will have multiple layers of gratings.

According to the paper, “One optical multi-layer periodic structure that is of particular interest is the ‘woodpile’ crystal: Layers of parallel bars on top of each other, turned 90° every other layer like stacked wooden logs. This structure has been made and researched in the past, because of it’s optical band gap properties and relatively simple manufacture method of stacking thin bars. The wood pile has also been produced with similar photon polymerisation methods and used for multiple purposes. However, with the Nanoscribe, we see an opportunity to modify this structure. Instead of a 90° difference between layers, a crystal with another angle can be made with the Nanoscribe. This twisted woodpile has different transmissions in right- and left-handed polarised light.”

According to a paper published last year about the use of 3D woodpile photonic crystals for visible light applications, photonic crystals are structures with a periodically modulated refractive index.

In addition to modifying the woodpile crystal structure, Stolte also looked into unintended scattering from surface roughness, as well as the nonconformity effect “between intended and produced structure on the optical far field diffraction pattern.”

Transmission patterns of 3D-printed multi-layered gratings.

The research also took steps to both produce, and research, transmissions of 3D optical periodic structures, such as the twisted woodpile one.

Stolte concludes, “With the exploration of 3D-printing in one layer gratings done in this research, future research should focus more on stacking the gratings.”

You can read Stolte’s full thesis here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

Share this Article


Recent News

Controlling Porosity in 3D Printing with Activated Carbon

Arcam EBM Center of Excellence: GE Additive Expands Additive Manufacturing Site by Three Times



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

UK Heart Patient Undergoes Rare Surgery for 3D Printed Titanium Sternum

A Fleetwood, Lancashire woman in the UK is enjoying better health today, able to perform daily tasks at home, not flinching when she coughs or sneezes—but best of all, she...

3D Printing News Briefs: August 16, 2019

In today’s 3D Printing News Briefs, we’re starting with some business and ending with an upcoming event. The Rapid Application Group has earned an important industry certification, and GE Additive...

Nexxt Spine Receives FDA 510(k) Clearance for 3D Printed Stand Alone Cervical Implants

Medical device company Nexxt Spine, founded in Indiana ten years ago, manufactures its own product line of spinal implants and instrumentation. This month, the company announced that its NEXXT MATRIXX Stand Alone...

Metal 3D Printing in Germany: Exploring Wire and Arc Additive Manufacturing (WAAM)

In the recently published ‘Plasma Multiwire Technology with Alternating Wire Feed for Tailor-Made Material Properties in Wire Arc Additive Manufacturing,’ authors Uwe Reisgen, Rahul Sharma, and Lukas Oster (all from...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!