University of Pittsburgh Receives $1M Grant to Study 3D Printing for Nuclear Components

Share this Article

Dr. Albert To stands next to the EOS DMLS M290 in the Swanson School’s ANSYS Additive Manufacturing Research Lab.

There is a great deal of promise for the use of 3D printing in the nuclear power industry, but there are also a number of challenges. The parts required for nuclear power tend to be extremely complex, which makes supports difficult or even impossible, if they’re located inside the component, to remove. Further research is needed on how to effectively fabricate and optimize these components, because the potential for additive manufacturing in this industry is too promising to abandon.

The University of Pittsburgh’s Swanson School of Engineering has been awarded $1 million to study and advance the design and manufacture of nuclear components using 3D printing. The award is part of the U.S. Department of Energy (DOE) Office of Nuclear Energy’s Nuclear Energy Enabling Technologies (NEET) program.

The research will be directed by Albert To, Associate Professor of Mechanical engineering and Materials Science (MEMS) at the Swanson School. Co-investigators include Wei Xiong, Assistant Professor of MEMS at Pitt, and Owen Hildreth, Assistant Professor of Mechanical Engineering at the Colorado School of Mines. Corporate collaborators in Pittsburgh include Curtiss-Wright Corporation and Jason Goldsmith at Kennametal Inc.

Cracking in the build resulting from excessive residual stress in the support structure from the laser powder bed additive manufacturing process.

The research will involve the development of dissolvable supports, as well as greater topology optimization and improved microstructure design to fabricate nuclear components with minimal distortion and greater structural integrity at lower cost.

“Many gaps still remain in the scientific understanding of additive manufacturing, most especially the optimization of the assembly process while reducing build failure and cost,” said Drs. To and Xiong. “Removing internal support structures in complex additive manufactured components via post-machining is costly and sometimes impossible. By integrating dissolvable supports, topology optimization, microstructure design, we have an opportunity to drastically reduce post-processing costs for AM components, while ensuring manufacturability of designs with complex internal features like those needed in the nuclear industry.”

A major focus will be on support removal. According to Dr. Hildreth, 30 to 70 percent of the cost of additive manufacturing lies in post-processing, particularly the removal of supports.

“Our dissolvable support technology enables consolidation of the many manufacturing steps currently required for complex nuclear components into one AM assembly,” he said. “This will reduce manufacturing costs by 20 percent and improve manufacturing schedules by at least six months. This work will help bring dissolvable supports to not just nuclear applications, but to the broader metal AM community so that costs can be significantly reduced. Metal AM is projected to be a $21.2 billion industry in five years, and these batch-processable dissolvable supports could save the industry $10 billion while also expanding design freedom and reducing post-processing machining.”

Failed build of a complex part due to excessive residual distortion from the laser powder bed additive manufacturing process.

The award to the University of Pittsburgh is one of five NEET Crosscutting Technologies projects led by Department of Energy national laboratories, industry and US universities to address challenges in nuclear energy. The projects will involve the development of advanced sensors and instrumentation, advanced manufacturing methods, and materials for multiple nuclear reactor plant and fuel applications.

“Because nuclear energy is such a vital part of our nation’s energy portfolio, these investments are necessary to ensuring that future generations of Americans will continue to benefit from safe, clean, reliable, and resilient nuclear energy,” said Ed McGinnis, the DOE’s Principal Deputy Assistant Secretary for Nuclear Energy. “Our commitment to providing researchers with access to the fundamental infrastructure and capabilities needed to develop advanced nuclear technologies is critical.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: University of Pittsburgh]

 

Share this Article


Recent News

Mighty Buildings’ Commercial House 3D Printing Automates Construction by 80 Percent

MakerOS Webinar: Make the Most Profit from Your 3D Printing Business



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

3D Printing Webinar and Virtual Event Roundup, August 9, 2020

We’ve only got four online events to tell you about this week—a summit and a few webinars, one of which is on-demand. Read on to learn more! AM Industry Virtual...

Featured

Additive Manufacturing Strategies 2021 Moves Online, Adds Extra 3D Printing Vertical

Additive Manufacturing Strategies (AMS), the annual summit co-hosted by 3DPrint.com and SmarTech Analysis, is a conference focused on business intelligence for the additive manufacturing industry. The first year, AMS was...

Featured

3DEXPERIENCE: A Virtual Journey, Part 1

Due to the ongoing COVID-19 crisis, this year’s 3DEXPERIENCE Forum by Dassault Systèmes had to be re-imagined as a virtual event, just like so many other conferences. At 1 pm...

3D Printing Webinar and Virtual Event Roundup, August 2, 2020

It’s another busy week in the 3D printing industry that’s packed full of webinars and virtual events, ranging in topics from medical materials and flexible electronics to polypropylene and market...


Shop

View our broad assortment of in house and third party products.