University of Pittsburgh Receives $1M Grant to Study 3D Printing for Nuclear Components

Share this Article

Dr. Albert To stands next to the EOS DMLS M290 in the Swanson School’s ANSYS Additive Manufacturing Research Lab.

There is a great deal of promise for the use of 3D printing in the nuclear power industry, but there are also a number of challenges. The parts required for nuclear power tend to be extremely complex, which makes supports difficult or even impossible, if they’re located inside the component, to remove. Further research is needed on how to effectively fabricate and optimize these components, because the potential for additive manufacturing in this industry is too promising to abandon.

The University of Pittsburgh’s Swanson School of Engineering has been awarded $1 million to study and advance the design and manufacture of nuclear components using 3D printing. The award is part of the U.S. Department of Energy (DOE) Office of Nuclear Energy’s Nuclear Energy Enabling Technologies (NEET) program.

The research will be directed by Albert To, Associate Professor of Mechanical engineering and Materials Science (MEMS) at the Swanson School. Co-investigators include Wei Xiong, Assistant Professor of MEMS at Pitt, and Owen Hildreth, Assistant Professor of Mechanical Engineering at the Colorado School of Mines. Corporate collaborators in Pittsburgh include Curtiss-Wright Corporation and Jason Goldsmith at Kennametal Inc.

Cracking in the build resulting from excessive residual stress in the support structure from the laser powder bed additive manufacturing process.

The research will involve the development of dissolvable supports, as well as greater topology optimization and improved microstructure design to fabricate nuclear components with minimal distortion and greater structural integrity at lower cost.

“Many gaps still remain in the scientific understanding of additive manufacturing, most especially the optimization of the assembly process while reducing build failure and cost,” said Drs. To and Xiong. “Removing internal support structures in complex additive manufactured components via post-machining is costly and sometimes impossible. By integrating dissolvable supports, topology optimization, microstructure design, we have an opportunity to drastically reduce post-processing costs for AM components, while ensuring manufacturability of designs with complex internal features like those needed in the nuclear industry.”

A major focus will be on support removal. According to Dr. Hildreth, 30 to 70 percent of the cost of additive manufacturing lies in post-processing, particularly the removal of supports.

“Our dissolvable support technology enables consolidation of the many manufacturing steps currently required for complex nuclear components into one AM assembly,” he said. “This will reduce manufacturing costs by 20 percent and improve manufacturing schedules by at least six months. This work will help bring dissolvable supports to not just nuclear applications, but to the broader metal AM community so that costs can be significantly reduced. Metal AM is projected to be a $21.2 billion industry in five years, and these batch-processable dissolvable supports could save the industry $10 billion while also expanding design freedom and reducing post-processing machining.”

Failed build of a complex part due to excessive residual distortion from the laser powder bed additive manufacturing process.

The award to the University of Pittsburgh is one of five NEET Crosscutting Technologies projects led by Department of Energy national laboratories, industry and US universities to address challenges in nuclear energy. The projects will involve the development of advanced sensors and instrumentation, advanced manufacturing methods, and materials for multiple nuclear reactor plant and fuel applications.

“Because nuclear energy is such a vital part of our nation’s energy portfolio, these investments are necessary to ensuring that future generations of Americans will continue to benefit from safe, clean, reliable, and resilient nuclear energy,” said Ed McGinnis, the DOE’s Principal Deputy Assistant Secretary for Nuclear Energy. “Our commitment to providing researchers with access to the fundamental infrastructure and capabilities needed to develop advanced nuclear technologies is critical.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: University of Pittsburgh]

 

Share this Article


Recent News

Dassault Systèmes Introduces SOLIDWORKS 2020 Release at Modeling & Simulation Conference

nScrypt 3Dx-700 System Goes Beyond 3D Printing for Digital Manufacturing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

nScrypt to Deliver Factory in a Tool to Australian Defense Department

The Defence Science and Technology (DST) Group of Australia’s Department of Defence has selected nScrypt’s Factory in a Tool (FiT) platform to augment its research operations.  DST is a leader...

The NASA BioFabrication Facility Launches Today: Will Use Microgravity to Grow Heart Tissue in Space

“We choose to go to the Moon!” We have heard that quite a lot over the last few weeks, along with celebrations in the United States and press coverage all...

Czech Republic: Researchers to Support Ongoing Electronic Structures Work with nScrypt 3D Printer

The University of Pardubice is one of the top universities in the Czech Republic, and particularly excels in the chemical sciences. It originally opened in 1950, in answer to a local...

nScrypt Sending Rugged Model of 3D Bioprinter to the Desert for Military Experiments in Challenging Climates

Three years ago, Florida company nScrypt, which was founded in 2002 as a Sciperio spin-out and develops next-generation, high-precision Micro-Dispensing and Direct Digital Manufacturing equipment and solutions for industrial applications, took...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!