3D Printed Color-Changing Material Holds Potential for Information Storage

Share this Article

3D printing grows more sophisticated every day. The technology is capable of producing items that change shape and even move, in experiments that still seem like something out of science fiction. Now University of Nottingham researchers have developed a 3D printed material that changes color in response to light.

Color-changing materials have always been popular among children. When I was growing up, I had a spoon that changed color when placed in milk or water, a bookmark that changed color when touched, and, of course, at least one mood ring. The research conducted by the University of Nottingham scientists has the potential to do a lot more than just entertain kids, however – it could greatly increase the functional capabilities of 3D printed devices for industries like electronics, healthcare and quantum computing.

The research, led by Dr. Victor Sans Sangorrin from Nottingham’s Faculty of Engineering and Dr. Graham Newton from the School of Chemistry, is published in a paper entitled “3D-Printable Photochromic Molecular Materials for Reversible Information Storage,” which you can access here.

“This bottom-up approach to device fabrication will push the boundaries of additive manufacturing like never before,” said Dr. Sangorrin. “Using a unique integrated design approach, we have demonstrated functional synergy between photochromic molecules and polymers in a fully 3D-printed device. Our approach expands the toolbox of advanced materials available to engineers developing devices for real-world problems.”

To demonstrate the concept, the researchers developed a photoactive molecule that changes from colorless to blue when light is shined on it. The color change can then be reversed by exposure to oxygen. They then 3D printed composite materials by combining the photoactive molecules with a custom-made polymer, creating a material that can store material reversibly – in a way, it’s like 3D printed invisible ink.

“We can now take any molecules that change properties upon exposure to light and print them into composites with almost any shape or size,” said Dr. Newton. “In theory, it would be possible to reversibly encode something quite complex like a QR code or a barcode, and then wipe the material clean, almost like cleaning a whiteboard with an eraser. While our devices currently operate using colour changes, this approach could be used to develop materials for energy storage and electronics.”

This is not the first advanced 3D printing application developed by the University of Nottingham, and the school is equipped with an impressive 3D printing research lab set up for research into pharmaceuticals and more. This latest research could have implications for not only electronics but medicine as well.

Authors of the paper include Dominic J. Wales, Qun Cao, Katharina Kastner, Erno Karjalainen, Graham N. Newton and Victor Sans. The research was supported by the Leverhulme Trust, the German Academic Exchange service (DAAD) and the University of Nottingham.

Discuss this story and other 3D printing topics at 3DPrintBoard.com, or share your thoughts below.

[Images: University of Nottingham]

 

Share this Article


Recent News

Digital Manufacturing Investor Day Hosted by Dyndrite Corporation

The Brittle Spear, Part I: A Disposable World



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

Sponsored

The Sustainability of 3D Printing: Myth or Reality?

Historically, quality, cost and delivery have been the primary drivers for decision making within manufacturing. Today, another word is on the minds of executives: Sustainability. Sustainability is increasingly important in...

AMGTA Commissions First Research Project on Environmental Sustainability of Metal 3D Printing

In November, the non-commercial, global trade group AMGTA, or the Additive Manufacturer Green Trade Association, was launched in order to promote the many environmental, green benefits of using additive manufacturing...

Sustainable Cabin Built on 3D-Printed Concrete Stilts from Infested Ash Wood

Our house had several ash trees in the front and back yard while I was growing up, and we lost three of them due to various acts of nature. Ash...

Recycling Filaments: Evaluating the Mechanical Response of ABS in Multiple Cycles

Researchers from Greece experiment with sustainability in materials, detailing the findings of their study in the recently published ‘Sustainable Additive Manufacturing: Mechanical Response of Acrylonitrile-Butadiene-Styrene Over Multiple Recycling Processes.’ The...


Shop

View our broad assortment of in house and third party products.