Last year, startup Prellis Biologics made a big announcement: it had successfully 3D printed blood vessels, creating scaffolding that contained microvascular structures. The company is one of a growing list of organizations aiming for the goal of 3D printing transplantable, viable human organs, and it has now announced that it has gotten a step closer: it has reached record speed and resolution in printed human tissue with viable capillaries.
“A major goal in tissue engineering is to create viable human organs, but nobody could print tissue with the speed and resolution needed to form viable capillaries. At Prellis, we’ve now developed that technology, paving the way for important medical advances and, ultimately, functional organ replacements,” said Melanie Matheu, PhD, CEO and Co-Founder of Prellis Biologics.
Cells can only survive for a limited amount of time without a blood supply, so printing speed is critical when it comes to creating microvasculature and scaffolding for human tissue. Tissue that is densely packed with cells can survive for less than 30 minutes unless oxygen and nutrients can be immediately supplied through capillaries. Fine printing resolution is equally important, since capillaries are microscopic – about 5 to 10 microns in diameter. A human hair, in comparison, is 75 to 100 microns in diameter. Prellis Biologics’ holographic 3D printing technology can print as small as 0.5 microns.
Previously, it could take weeks or more to 3D print a centimeter cube of human tissue with microvasculature. Prellis Biologics can 3D print high-resolution tissue structures up to 1,000 times faster with vasculature in place.
“The speed we can achieve is limited only by the configuration of the optical system. We are now exploring custom optical system development, which will dramatically increase our capabilities,” said Dr. Matheu. “Our ultimate goal is to print the entire vascular system of a kidney in 12 hours or less.”
Typical extrusion-based bioprinting is too slow and too low in resolution to create capillaries and keep cells alive, so Prellis’ technology is quite revolutionary, enabling the creation of thick, functional tissue for drug and toxicology testing and even, eventually, human organs.
“Vasculature is a key feature of complex tissues and is essential for engineering tissue with therapeutic value. Prellis’ advancement represents a key milestone in the quest to engineer organs,” said Todd Huffman, CEO of dvanced digital tissue imaging and data analysis company 3Scan.
In the US, every day approximately 330 people die from organ failure. This number could be greatly reduced or even eliminated with 3D printed, transplantable organs, and there would be much less risk of rejection from those organs once they were transplanted. Many lives could be saved, and many, many others could be improved by eliminating the need for things like dialysis, oxygen tanks and daily insulin injections.
“Microvasculature is the fundamental architectural unit that supports advanced multicellular life and it therefore represents a crucial target for bottom-up human tissue engineering and regenerative medicine,” said Jordan Miller, PhD, Assistant Professor of Bioengineering at Rice University and an expert in 3D printed implantable biomaterial structures.
As bioprinting continues to advance and companies involved in this area continue to grow, innovations in tissue engineering will make more possible in saving and enhancing human lives.
Discuss this story and other 3D printing topics at 3DPrintBoard.com, or share your thoughts below.
[Images: Prellis Biologics]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Reinventing Reindustrialization: Why NAVWAR Project Manager Spencer Koroly Invented a Made-in-America 3D Printer
It has become virtually impossible to regularly follow additive manufacturing (AM) industry news and not stumble across the term “defense industrial base” (DIB), a concept encompassing all the many diverse...
Inside The Barnes Global Advisors’ Vision for a Stronger AM Ecosystem
As additive manufacturing (AM) continues to revolutionize the industrial landscape, Pittsburgh-based consultancy The Barnes Global Advisors (TBGA) is helping shape what that future looks like. As the largest independent AM...
Ruggedized: How USMC Innovation Officer Matt Pine Navigates 3D Printing in the Military
Disclaimer: Matt Pine’s views are not the views of the Department of Defense nor the U.S. Marine Corps Throughout this decade thus far, the military’s adoption of additive manufacturing (AM)...
U.S. Congress Calls Out 3D Printing in Proposal for Commercial Reserve Manufacturing Network
Last week, the U.S. House of Representatives’ Appropriations Committee moved the FY 2026 defense bill forward to the House floor. Included in the legislation is a $131 million proposal for...