AMS 2025

Prellis Biologics Sets Out to Eliminate the Donor Waiting List with 3D Printed Organs

AM Research Military

Share this Article

There’s still some doubt among many people as to whether 3D printed, functioning, transplantable human organs will ever become a reality, but according to others, that day is right around the corner. There’s more than one startup promising that it will be the one to deliver 3D printed organs: BIOLIFE4D is currently seeking funding to develop 3D printed hearts, and another new company called Prellis Biologics believes it may have found a way to eliminate the organ donor waiting list altogether.

Prellis was founded in 2016 by Drs. Melanie Matheu and Noelle Mullin, who have developed a way to address one of the biggest obstacles in 3D bioprinting: the issue of microvasculature. 3D printed organs cannot survive in the body without the complex network of small blood vessels needed to provide nutrients and oxygen to cells, but the Prellis Biologics team has found a way to create those blood vessels by building scaffolding that contains microvascular structures.

“Our vision is to create a company that uses technology to print any type of human organ, providing people with a long-lasting solution to a given medical issue,” said CEO Dr. Matheu. “We believe our technology will jumpstart the practical use of lab-printed tissue for life-saving drug development, rapid development of human antibodies, and production of human organs for transplant.”

Dr. Noelle Mullin (L) and Dr. Melanie Matheu [Image: Business Wire]

We shouldn’t expect to see 3D printed, ready-for-transplant human livers on the market next week, of course, but Prellis does have some life-changing biotechnology that will be ready for the market much sooner. For example, the company has developed a process for 3D printing lymph node organoids, which are capable of immune responses and the generation of human antibodies. This eliminates the need for antibody development in animals, and proof-of-concept studies have generated antibodies that are reactive to the Zika virus.

The first 3D printed tissues produced by Prellis will be used for antibody generation as well as pharmaceutical testing. The first 3D printed product line to be developed will be what are known as islets of langerhans, the insulin-producing part of the pancreas.

“Type 1 diabetics lose insulin-producing islets of langerhans at a young age,” said Dr. Matheu. “If we can replace these, we can offer diabetes patients a life free of daily insulin shots and glucose monitoring.”

Prellis Biologics has now received seed funding in a $1.8 million investment round led by venture capital firm True Ventures. Other investors included Civilization Ventures and 415 Ventures, as well as angel investors. The company also received earlier support from biotech startup accelerator IndieBio; the total funding that has been invested in Prellis so far is $1.92 million.

“Producing viable lab-grown human tissue will revolutionize healthcare, and the Prellis team is at the forefront of that movement,” said Rohit Sharma, venture partner at True Ventures and Prellis board member. “Investing in Melanie and Noelle is an investment in the future of regenerative medicine. We’re proud to help them begin their quest.”

Prellis Biologics’ 3D printing method involves the creation of layers of cell-containing extracellular matrix at almost instantaneous speeds and with high resolution. No cell-seeding or additional curing steps are required for the tissue matrix. The proprietary, laser-based 3D printing process eliminates the risk of cell toxicity, and allows for the 3D printing of thicker tissues.

“Over 230 people die every day in the U.S. from liver and kidney disease,” said Chief Scientific Officer Dr. Mullin. “By coupling stem cell and immunology expertise with our 3D printing technology, we’ll be able to produce organs and tissues with the precise vascular infrastructure necessary to make them viable.”

Discuss this story and other 3D printing topics at 3DPrintBoard.com, or share your thoughts below.

 

Share this Article


Recent News

3DPOD 230: AM for Aerospace, Defense and More with Tim Simpson, NASA & Penn State

ADDMAN Adds Continuous Composites Technology for Hypersonics and UAV Applications



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Lockheed Martin Adds 16,000 Square Feet of 3D Printing to Texas Facility

Defense giant Lockheed Martin has unveiled a substantial increase in its additive manufacturing (AM) capabilities with an expansion of its facility in Grand Prairie, Texas. The addition includes some 16,000...

Featured

EOS Launches New P3 NEXT SLS 3D Printer at Formnext 2004

EOS, the German-US leader in additive manufacturing (AM) solutions, has launched the P3 NEXT selective laser sintering (SLS) printer at Formnext 2024 in Frankfurt, Germany (November 19-22). EOS created the...

3D Printing Webinar and Event Roundup: November 10, 2024

We’ve got another busy week ahead of webinars and events around the world! There are multiple open houses and conferences, advanced AM training, a 3D printer launch event, our own...

Dinsmore Gains Ability to 3D Print Functional Stents Thanks to Axtra3D

As essentially everyone familiar with additive manufacturing (AM) knows, one of the greatest advantages of 3D printing technologies is the potential to produce parts with complex geometries that are unachievable...