Researchers Create First Fully 3D Printed Electric Motor
“Our goal over the last two and a half years was to dramatically increase the temperature that electrical machines are capable of withstanding,” said Dr. Ralf Werner, head of the Professorship.
The researchers achieved this goal by replacing conventional polymer-based insulation materials with specialized ceramics, which have a much higher degree of temperature resistance.
“The maximum permissible winding temperature of 220°C associated with conventional insulation systems can then be exceeded by a significant amount,” said Rudolph. “The operating temperature of electric machines is therefore only limited by the ferromagnetic properties of the iron components, which can only be maintained up to 700°C.”

Johannes Rudolph observes the multimedia 3D-printing of an electrical machine in the lab. [Image: Jacob Müller]
The 3D printing process that the researchers developed for the motor involves the extrusion of viscous pastes which consist of particles of iron, copper or ceramics as well as specially-adapted bonding agents. The 3D printed part is then sintered, which burns away the binder and fuses the metallic or ceramic materials together.“Despite the process-related decrease in the conductivity of the copper used, in specific application scenarios, it is possible to increase the degree of efficiency by significantly reducing the winding temperature,” said Lorenz.
“The special strength of the 3D multi-material process lies in the possibility of using several materials simultaneously during a printing process,” the researchers explained. “For example, electrically conductive structures made of copper can be printed together with their insulation. This is made of ceramic materials that are superior to conventional organic insulating materials made of plastic in many physical properties such as heat resistance or thermal conductivity. In this way, electric coils can be produced with significantly higher temperature resistance. In combination with ferromagnetic materials such as iron, moreover, it is possible to manufacture entire electrical machines or their components in one printing operation.”
To achieve the necessary degree of precision when extruding the pastes, the researchers worked closely with ViscoTec Pumpen- u. Dosiertechnik GmbH.
“The motor that was printed in the Chemnitz University Laboratory represents a breakthrough and is at the same time the proof of principle – it demonstrates the feasibility – of our technology,” said Rudolph.
Rudolph and Lorenz plan to start a university spin-off company based on the technology. The researchers presented their work at Hannover Messe, which took place from April 23rd to the 27th. You can learn more about their 3D printing process here.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Source: Chemnitz University of Technology]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
You May Also Like
3D Printing News Briefs, April 12, 2025: RAPID Roundup
The news from last week’s RAPID+TCT in Detroit just keeps on coming! That’s why today’s 3D Printing News Briefs is another RAPID Roundup of more exciting announcements from the trade...
What I Would Do If I Were Josef Průša, Part 2: Right on the Nose
How can you beat Garry Kasparov? With a baseball bat. If you ask yourself the question, “How can I beat Garry Kasparov,” and silently add the fragment “at chess” in...
What I Would Do If I Were Josef Průša, Part 1: Shark Cosplay
If I were Josef Průša, I’d probably gloat and be insufferable. Honestly, though, it’s a question that has vexed me. Josef asked on LinkedIn whether people would like to see...
Flashforge AD5X Review: Multicolor TPU 3D Printing Made Simple
Disclosure:The AD5X was provided to me by Flashforge free of charge for the purpose of this review. I have not received any additional compensation. All opinions expressed are my own,...