MX3D’s 3D Printed Bridge Project Takes One More Step Closer to Completion

Share this Article

In Amsterdam, as the Oudezijds Achterburgwal canal winds through the city, a series of more than 1,000 bridges are in place to help pedestrians get from one side to the other. One of those bridges is a temporary structure, made of concrete and unattractive with graffiti scribbled along its sides. Soon, this bridge will be replaced by something altogether different: a gleaming steel structure with sides that swoop, ripple and curve. It’s unlike anything the city – or, really, the world – has ever seen before.

The bridge was first conceptualized in 2015, as MX3D, Heijmans, and Joris Laarman Lab announced their ambitious plans to 3D print the bridge in place over the canal, literally in mid-air. The idea was to utilize MX3D’s novel freeform 3D printing technology, which involves six-axis robots that can build, yes, in mid-air. Construction would start simultaneously on either side of the canal and meet in the middle. This plan was eventually scrapped and construction was moved into a large studio space where pedestrians couldn’t interfere and where the team had control over the environment.

The original design was changed, too. Initially, the bridge was envisioned to be a system of struts networking out in an open, crystalline design, but that design would have placed undue stress on the canal walls, so a reimagining was necessary, resulting in the solid, curving structure that is now waiting for its final touches. The 12.5-meter-long, 6.3-meter wide bridge span is now fully 3D printed, after six months of printing with four robots and 4,500 kg of stainless steel and 1,100 km of wire.

The 3D printed bridge has just been moved back to MX3D’s studio from the larger studio where it was constructed. There, the designers and engineers working on the project will test the bridge’s integrity and add a clear coat to protect its surface from the elements. A steel deck will be added to serve as a walkway – which is almost a shame, because its curved supports are so visually appealing, though not exactly a suitable surface for walking. The next phase will also include the installation of a series of smart sensors that will monitor the health of the bridge and measure things like air quality and weight dispersion, so that the number of people walking on the bridge at any given time can be detected.

This data will be fed to a digital twin of the bridge so that engineers can monitor the performance of the bridge and modify it if necessary. Safety is a key factor in the installation of the bridge, and MX3D worked with the city of Amsterdam to establish a new safety standard and a testing plan to ensure the bridge’s continued integrity. With the sensor network allowing engineers to monitor and address any issues immediately, the bridge is expected to be extremely safe.

“Last Thursday we tested out the bridge with 30 people, and it was fine. It behaves like a bridge like it should,” MX3D Co-Founder Gijs van der Velden told Gizmodo. “With the bridge deck on top, it will be even stronger.”

A few additional swirls are going to be 3D printed before the end of the year, and the summer will be spent performing structural tests and finalizing the design and application of the sensors. The team hopes to present the finalized bridge to the world in October – perhaps in time for Dutch Design Week – and it will be finally installed in its Amsterdam location in early 2019.

The bridge is a real showcase of the capabilities of 3D printing and how the technology can change construction – not just of bridges, but of anything that can be constructed. MX3D envisions custom building facades created on site, with shapes that have never been seen before in the construction industry. The bridge’s swirling design is unlike any bridge that has ever been built, and it wouldn’t have been possible with any other technology.

“When the bridge came in, even I started believe myself and my stories about how great this technology is—instantly,” said van der Velden. “It’s such a massive structure that immediately, even if you’re not a technician or someone who’s been playing around with this tech for years, you can see that steel objects are going to change drastically in the coming years.”

MX3D has tentative plans to 3D print several more bridges in the future, though details have not yet been announced.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: MX3D]

 

Share this Article


Recent News

MULTI-FUN Consortium Aims to Improve Metal 3D Printing

JCRMRG’s 3D Health Hackathon Aims for Sustainable 3D Printed PPE



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

3D Printing Webinar and Virtual Event Roundup, July 7, 2020

We’ve got plenty of 3D printing webinars and virtual events to tell you about for this coming week, starting with nScrypt’s webinar today. 3Ding and Formlabs will each hold a...

Featured

Interview: Redefine Meat CEO’s Insight into New Alternative Meat & 3D-Printed Food

Amid lifestyle changes toward wellness and health, as well as an inclination of industries to adopt disruptive technologies, the 3D printed plant-based meat industry could go from niche to mainstream...

NIST Grants $1.4 Million to America Makes for 3D Printed PPE

As the COVID-19 pandemic has swept the world and changed life as we know it in many ways—along with opening up many questions for the future—makers, researchers, and medical inventors...

Featured

French Army Deploys Massive Military Print Farm for Spare Parts

The French Army has recently partnered with HAVA3D, a prominent distributor and integrator of additive manufacturing solutions based out of Le Mans, France, to deploy one of the largest 3D...


Shop

View our broad assortment of in house and third party products.