Finland’s First 3D Printed Aircraft Engine Part Takes to the Skies in Maiden Flight

Share this Article

T25 Sensor Housing – first 3D printed component in GE90 jet engine.

One field that 3D printing technology has definitely made a major impact on over the last several years is aerospace – so much so, in fact, that the FAA is currently working to develop a plan on how to deal with the increased rate at which the industry is adopting 3D printing.

The technology is very useful in manufacturing aircraft, as it can reduce the weight of components, as well as producing parts with reduced complexity that offer consistent quality and repeatable characteristics. These features can lower energy expenditures and cost, while also increasing aircraft performance, in the aerospace and defense industry, and a wide variety of aircraft, from drones to jets and rockets, now use 3D printed parts.

Many of these aircraft feature 3D printed engine parts, which can help reduce the total number of pieces that make up the component…which, again, helps with weight reduction. By using 3D printing technology to make the parts for an aircraft engine, companies can also see other benefits as well, including an increase in power and a decrease in fuel burn.

Patria, headquartered in Finland, provides security, defense, and aviation life cycle support services, as well as technology solutions. The company, which is jointly owned by the Norwegian Kongsberg Defence & Aerospace AS and the Finnish state, operates all over the world, with offices and projects in the US, the UAE, Sweden, South Africa, Poland, Norway, Estonia, and Croatia. It is Finland’s primary source for the maintenance, repair, and over-haul (MRO) of military aircraft engines.

[Image: Patria]

The company’s Aviation and Aerostructures business units have over 90 years of experience in the industry, offering assembly, flight training, maintenance and modifications of aircraft and helicopters, and parts manufacturing. In addition, the units offer life-cycle support services for aircraft and helicopters, which covers engine, equipment, and fuselage repair, along with training and maintenance.

Patria has long been involved in using modern manufacturing methods to fabricate and repair different parts and components for aircraft, and has spent more than two years working on the manufacturing process for a new 3D printed part. That hard work has finally paid off, as the country’s first 3D printed aircraft engine part, installed in the F/A-18 Hornet strike-fighter, recently went on its successful maiden flight.

“For this part, the development work has been done over the last two years, with the aim of exploring the manufacturing process for 3D-printable parts, from drawing board to practical application,” said Ville Ahonen, the Vice President of Patria’s Aviation business unit. “Using 3D printing to make parts enables a faster process from customer need to finished product, as well as the creation of newer, better structures. We will continue research on additive manufacturing methods, with the aim of making the new technology more efficient.”

F/A-18 Hornet [Image: US Navy]

The 3D printed aircraft engine part was fabricated using the Inconel 625 superalloy, which is nickel-based and has been used before to manufacture turbine blades. The company was granted approval from the Military Design Organization Approval (MDOA) and the Finnish Military Aviation Authority (FMAA), in accordance with European Military Aviation Requirements (EMARs), to 3D print the part, which was designed in accordance with the MDOA approval.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source: Patria]

 

Share this Article


Recent News

polySpectra Launches Kickstarter for Industrial-grade Desktop 3D Printing Resin

Fraunhofer and 3d4MEC Develop Monitoring for Brass 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Tekna Introduces Coarse Titanium Powders for Faster 3D Printing

Tekna is introducing coarse Ti-64 titanium powders to the market, aimed at laser powder bed fusion (LPBF) users. These larger powders could make a significant difference. Designed for 60 μm...

QIDI Q1 Pro 3D Printer Review: A Heated Value

Disclosure: The Q1 PRO was provided to me by QIDI free of charge for the purpose of this review. I have not received any other compensation. All opinions expressed are...

3D Printing News Briefs, September 21, 2024: Process Monitoring, Earmolds, & More

We’re taking care of business first in today’s 3D Printing News Briefs, as Sevaan Group has launched an additive manufacturing service and Farsoon Europe is partnering with MostTech to expand...

Divide by Zero Releases $500 Altron 3D Printer with Advanced Features

Indian original equipment manufacturer (OEM) Divide by Zero Technologies has released its latest 3D printer, the Altron. Priced at $500, the machine features spaghetti detection, automatic calibration, nozzle height detection,...