Rail Researchers at University of Huddersfield Explore 3D Printing of Train Components

Faster than a speeding bullet train: Japan is testing a maglev (magnetic levitation) train capable of reach speeds up to 581 km/h. [Image: Getty Images]
Since then, train technology has continued to be refined and improved upon, beginning with the introduction of electric power in 1837 followed by diesel power in 1888, although diesel wasn’t a commercial success until much later. While the first trains were capable of travel at very low speeds, the 1960s saw the introduction of the famed bullet trains, or Shinkansen, that have become the trademark of Japanese rail travel. And it is in Japan that trials for the world’s fastest magnetic-leviation train led to the introduction of the possibility for travel at speeds of over 300 miles per hour. The shift from slow and steady to super fast came about because of more than just an increase in power of the engines. Instead, complete redesign of every component from rails to cars to wheels was necessary in order to support higher speeds.
There continue to be efforts to improve rail travel, whether in terms of safety, speed, or style. While style is the part that excites those of us who want to ride on trains for the experience, the mechanics behind the train are getting some renewed attention as a result of grant programs in the EU. As part of one of those grant programs, a project called RUN2RAIL has been given a budget of €2,732,000 and has allocated four work packages to research endeavors being undertaken between universities and private enterprise. The University of Huddersfield‘s Institute of Railway Research (IRR) has received almost £300,000 worth of funding as part of the undertaking and is using those monies to investigate the possibilities for lighter, more reliable, and less noisy rolling stock.

The Institute of Railway Research’s Professor Simon Iwnicki in the Institute’s test rig [Image: University of Huddersfield]
“[With carbon fiber] you can have any number of curves or shapes and therefore build up the shape you actually want, whereas with a steel frame there are only a certain number of shapes you can make. Also, carbon fiber is much lighter and you can put the material just where you want it, which makes it lighter still.”
The team will be exploring the potential for advanced manufacturing in terms of components such as axle boxes and brackets for brakes. The project is currently underway and expected to wrap up by the summer of 2019.
What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Source: University of Huddersfield]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and recieve information and offers from thrid party vendors.
You May Also Like
3D Printing News Unpeeled, Live with Joris Peels – Wednesday 10th of August
Today we’re going to discuss 3D printed razors, CERN and more in this live cast of the 3D Printing news.
3D Printing News Unpeeled, Live with Joris Peels – Tuesday 9th of August
Today we look at 3D Systems´ acquisition of DP Polar, 3D printing guns for money, revolutionary 3D printed breast implants and more. Below you can see the previous videos.
3D Systems Buys High-Speed 3D Printing Firm dp polar
The 3D printing mergers and acquisitions continue apace. On the heels of Markforged’s buyout of Digital Metal and Nano Dimension’s 12 percent purchase of Stratasys, 3D Systems (NYSE: DDD) has...
3D Printing Webinar and Event Roundup: August 7, 2022
Things are picking up a little in terms of 3D printing webinars and events this week! Fortify will be at the SmallSat Conference, ASTM is continuing its virtual certificate course,...
Print Services
Upload your 3D Models and get them printed quickly and efficiently.