US Marines Mobilize 3D Printing With X-FAB

Share this Article

To make the US Marines an ever-more-agile fighting force and empower Marines of all ranks to innovate and create solutions wherever they may be, the US Marine Corps has developed the X-FAB, which is essentially a self-contained 3D printing facility in a box, specifically, a fully transportable, mission-configurable, 20×20 foot collapsible box that looks like 3 shipping containers snapped together.[1]

It can be deployed wherever it is needed, and often accompanies the Marines’ SEMS (“Shop Equipment, Machine Shop”) facility, which is its machine-shop-in-a-box. It supports Maintenance Battalions, Supply Battalions, Marine Aviation Logistics Squadrons, Engineer Support Battalions, and Marine Wing Support Squadrons.[2]

Decisions about equipping each X-FAB are made on the commander level. The X-FAB I toured at a recent NATO conference was outfitted with CAD-software-equipped computers; the Marine Corps’ repository of approved, 3D printable digital blueprints; a hand-held 3D scanner; an uninterrupted power supply; a Cosine large-format 3D printer; a LulzBot TAZ; and a Markforged desktop composite printer, all of which are Material Extrusion Machines. The X-FAB is currently being tested for use on land and for ship-board use. Other 3D printer machine types are expected to be added soon. The X-FAB’s 3D printers are considered for upgrade or replacement on a 3-year equipment refresh cycle.

The X-FAB was ably staffed by the five Marines shown in the left of the photo below (from left to right): Gunnery Sergeant (GySgt) Arndt, GySgt Dickson, GySgt McCue, Sergeant Nixon, and Corporal Pittman. They are part of what the Marines proudly call its “Marine Maker” culture.[3]

The Marine wearing the tie is Colonel Howard Marotto, the Marine Corps’ Deputy Director for Additive Manufacturing and Innovation, who everyone calls Howie, a powerhouse of enthusiasm for 3D printing and how it can aid the Marines’ mission. wrote in June 2017 about the Nibbler drone, which is 3D printable on demand to support combat operations. The X-FAB I toured was also outfitted with a Nibbler, shown here held by GySgt Arndt. The Nibbler can be 3D printed and modified on demand in the X-FAB. For example, a Nibbler outfitted with a reconnaissance camera can be reconfigured in an hour with a 3D printed bracket to carry a chemical weapons sensor if the camera shows evidence of a rocket attack. The new bracket is then evaluated and approved for future use.[4]

The X-FAB team also showed me a replacement part they 3D printed on demand. Shown below are the original metal part, which is a Driver’s Vision Enhancer (DVE) Mount for the Light Attack Vehicle (LAV), and the orange plastic 3D printed replacement. Without the mount, the DVE is considered inoperable and the LAV cannot go out on any missions, primarily for safety reasons. Ordering a new metal DVE Mount takes months and costs $740, so the X-FAB Marines 3D printed a replacement in about 24 hours in orange plastic for about $10.

The need for the replacement originally arose during training exercises. Without the part, the Marines’ LAV could not participate in the exercises.  So they 3D printed what was intended to be a temporary replacement. But the orange plastic replacement worked so well that it may be qualified for permanent use. Victory Marines!

This project highlights not only the Marines’ resourcefulness, but the power of 3D printing on demand. It also suggests that 3D printed-on-demand parts can be sacrificial (print as often as needed, knowing they will not last long), temporary (to keep machines running until an original replacement part arrives), or as good as the original.

Currently, the X-FAB 3D prints only plastics, but metal Powder Bed Fusion machines are coming to X-FABs soon. Metal 3D printers are already being used at other Marine Corps facilities.

The Marines see 3D printing and the X-FAB pushing “core logistics functions to the lowest echelons and as close to the warfighter as possible. As the Marine Corps conducts distributed operations over greater distances, [additive manufacturing] will enable expeditionary forces to shorten their supply chains, lessen the lead-time for modified or replacement components or equipment, and allow for the creation of new or cutting-edge capabilities on the battlefield.”[5]

The Marines have adopted a unique 3-bin procedure, designated Green, Yellow, and Red, for empowering Marines to 3D print any part, anytime, anywhere. The bins are ways to categorize items for which a 3D printable digital blueprint may be present in a digital repository or for which a digital blueprint could be made with a 3D scanner. It may not be long before the Marines’ 3-bin approach is adopted by industry.

Items designated Green are pre-authorized for 3D printing. They may be digital blueprints in the Marines’ digital repository, or they may be polymer-based items whose form, fit, and function do not require performance analysis and have no risks to life and limb if they fail. These are items like hand tools, jigs, prototypes, knobs, hinges, and handles. Green items may also be replacement parts that can no longer be obtained from the manufacturer, or parts expressly approved for local manufacture.

Yellow items have medium risk if they fail. They may be safety or mission-critical in a combat zone, but a Lieutenant Commander or higher ranking officer has discretion to decide that the risk is reasonable based on mission requirements.[6]  As explained to me, the logic is that if a commanding officer has the authority to send soldiers into harm’s way, that same officer should have the power to authorize 3D printing a part that could cause moderate risk if it fails. Yellow is inherently a temporary category because items in this category are either approved (Green) or disapproved (Red) after a commander 3D prints them.

Code red items present serious risks to personal safety or mission success if they fail. 3D printing such items requires prior approval by the Marines Corps Systems Command (MARCORSYSCOM). However, if the absence of a part places the successful completion of a combat mission at risk, Lieutenant Commanders or higher can approve 3D printing and using the item until MARCORSYSCOM makes a final determination. Risks that must be considered include safety, third party intellectual property rights, effects on the environment, and the risk that the part could damage equipment if it fails.

As the Marine Corps rules stand at this time, commanders may not 3D print explosives or other lethal items.

The X-FAB and its staff of US Marines, the Marines Maker culture, the Nibbler drone, the replacement DVE Mount, and the Green/Yellow/Red bin procedure show that 3D printing any part, anytime, anywhere, is achievable in the near term, just like in my “Story of ZeframWD,” which I describe in my book, 3D Printing Will Rock the World, and in my YouTube video, Breaking Chains and Shaking Foundations.

Discuss this and other 3D printing topics at or share your thoughts below. 


John Hornick is the author of the award-winning book, 3D Printing Will Rock the World. He can be reached at [email protected].


[1] “ADDITIVE 1 MANUFACTURING 2 (AM) CONCEPT OF EMPLOYMENT (COE); Logistics Vision and Strategy (LPV-1), Logistics Plans, Policy and Strategic Mobility Division, Deputy Commandant, Installations and Logistics, Version: 0.1, November 15, 2017, p. 5 (“AM Concept of Employment”).

[2] AM Concept of Employment, p. 3.

[3] AM Concept of Employment, p. 2.

[4] AM Concept of Employment, p. 14-15.

[5] AM Concept of Employment, p. 2.

[6] AM Concept of Employment, p. 7.



Share this Article

Recent News

Hybrid Construction 3D Printing in Japan Combines Advantages of Wet & Dry Spraying

3D Printing for the Fourth of July


3D Design

3D Printed Art

3D printed automobiles

3D Printed Food

You May Also Like

Research Challenges Accuracy of FDM 3D-Printed Medical Models

Ben Searle and Deborah Starkey, both Australian researchers from Queensland University of Technology, explore better ways to create 3D-printed medical models. Their findings are outlined in the recently published “An...

Macotakara 3D Prints iPhone 12 Mockups

Sucking up hours of attention from users around the world since 2007, the iPhone has been a huge source of profit for Apple. The Cupertino-based company, founded in 1976 by...

Hey Model! 3D Printed Interactive & Modular Models Assist Blind & Limited Vision Users

Australian researchers Samuel Reinders, Matthew Butler, and Kim Marriott are exploring ways to improve 3D printed tools for individuals who are blind or have low vision (BLV). Releasing the details...

Appliance Maker Miele Offers 3D Printable Accessories on Thingiverse

Though it has yet to reach a widespread saturation point, we are slowly witnessing the birth of 3D printable replacement parts and accessories for consumer goods. The latest evidence of...


View our broad assortment of in house and third party products.