Polyetherimide (PEI) Offers a Wide Range of 3D Printing Uses: Learn More!

IMTS

Share this Article

It is easy to focus on the end product of the 3D printing process, especially as so many stunning innovations are being produced around the world. 3D printed parts are responsible for creating aerospace components, entire rockets, cars, and so many other items of all sizes and matters of importance, spanning nearly every industry. Suddenly there is an overwhelming amount of hardware to choose from to create such 3D printed industrial magic—and materials have progressed too as users’ needs have expanded, along with their willingness to experiment.

Now, Omnexus by SpecialChem is taking time to educate the public on alternative (and highly industrial) materials like Polyetherimide (PEI). With a recent comprehensive review of the high-performance polymer, we are able to understand more fully why it is used in serious engineering applications. It is important to understand that polyetherimides have been created in part to make up for areas where polyimides are lacking.

PEI is produced via the polycondensation reaction between bisphenol-A dianhydride such as tetracarboxylic dianhydride (produced from the reaction of bisphenol A and phthalic anhydride) and a diamine such as m-phenylene diamine.

Although polyimides are known for their strength, stability, mechanical properties, and more, they are also more difficult to melt, and can be less cost-effective to use. PEI materials, however, offer the following:

  • Good processability
  • High chemical resistance
  • Superior properties for electrical insulation
  • Good flame resistance
  • High tensile strength with versatile temperature range

Created in 1982, PEI is now distributed by numerous suppliers (SABICRTP CompanyLehmann & VossQuadrantPolyOne) and is popular for ‘highly demanding applications.’ It is used in resin form for creating 3D printed, high-strength prototypes and parts.

In areas such as automotive, PEI is being used more often in both electrical and lighting systems, along with ‘under-the hood’ applications. In these cases, temperature and chemical resistance and high strength are required to create items like transmission parts, ignition components, reflectors, lamp sockets, and a range of electric and mechanical systems like fuses, switches, bearings, and much more.

For the electronics market overall, PEI is being used due to its high heat resistance. This is especially conducive for parts such as fiber optics connectors, controllers, motorized parts, circuit boards, and more. The material is also used for molded interconnect devices (MIDs) because of its capabilities for plating, and allowing for the pairing of electronics and 3D printing. Ceramic-filled polyetherimide grades are also useful for microwave circuit boards, electronic chips, and capacitors.

For medical applications, PEI is useful in creating disposable medical devices, along with probe housings. It is able to resist high sterilization temperatures, and can withstand exposure to ethylene oxide gas and gamma radiation. PEI is also used for biohybrid applications, plus creation of other medical items like handles, enclosures, and even prostheses.

Other important uses are found in creating HVAC equipment with PEI, industrial cookware, food packaging trays, and more. PEI can be processed in methods like injection molding, compression molding, 3D printing, and thermoforming.

Find out more about PEI compounds here.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source / Images: Omnexus]

 

Share this Article


Recent News

Liquid Metal 3D Printing Sector Emerges with Fluent Metal’s $5.5M Investment

3DPOD Episode 191: Amy Alexander, 3D Printing at the Mayo Clinic



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 190: Generative Design for 3D Printing with Novineer CEO Ali Tamijani

Ali Tamijani, a professor in the Department of Aerospace Engineering at Embry-Riddle Aeronautical University, has an extensive background in composites, tool pathing, and the development of functional 3D printed parts,...

Featured

3DPOD Episode 189: AMUG President Shannon VanDeren

Shannon VanDeren is a consultant in the 3D printing industry, focusing on implementation and integration for her company, Layered Manufacturing and Consulting. For nearly ten years, she has been involved...

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry

Clare DiFazio’s journey into the 3D printing industry was serendipitous, yet her involvement at critical moments has significantly influenced the sector. Her position as Head of Marketing & Product Strategy...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...