Flubber, 3D Printed Flink and R&D Tax Credits

IMTS

Share this Article

Unrealistic scientific discoveries from our beloved childhood movies may be coming to life in today’s science community. In the 1960’s Disney movie The Absent-Minded Professor, Professor Brainard creates a substance that gains energy when it hits a hard surface and dubs it “flubber,” a portmanteau for flying rubber. Similar to “flubber,” Swiss scientists have created “Flink,” a functional, living ink that can be used for 3D printing. Flink can be 3D printed for a variety of purposes, and although the creation is still in preliminary stages, it may be extremely useful in the medical and biotechnical industries. Companies that use this new technology can benefit from the Research and Development Tax Credit.

The Research & Development Tax Credit

Enacted in 1981, the now permanent Federal Research and Development (R&D) Tax Credit allows a credit that typically ranges from 4%-7% of eligible spending for new and improved products and processes. Qualified research must meet the following four criteria:

  • Must be technological in nature
  • Must be a component of the taxpayer’s business
  • Must represent R&D in the experimental sense and generally includes all such costs related to the development or improvement of a product or process
  • Must eliminate uncertainty through a process of experimentation that considers one or more alternatives

Eligible costs include US employee wages, cost of supplies consumed in the R&D process, cost of pre-production testing, US contract research expenses, and certain costs associated with developing a patent.

On December 18, 2015, President Obama signed the PATH Act, making the R&D Tax Credit permanent. Beginning in 2016, the R&D credit can be used to offset Alternative Minimum tax for companies with revenue below $50MM and for the first time, pre-profitable and pre-revenue startup businesses can utilize the credit against $250,000 per year in payroll taxes.

What Flink Is and How It Works

The Flink project was led by Professor André R. Studart and his team in Switzerland. Flink is composed of bacteria that are embedded in a hydrogel that allows the bacteria to be molded and printed into scaffolds. The hydrogel can be thought of as the base for the ink as it provides the bacteria with a biocompatible environment which allows for growth and survival. The Flink can then be printed like a normal non-biological ink, such as plastic, from a 3D printer. Professor Studart and his team used a custom-built, four-axis 3D printer.

Uses for Flink

The scientists cited many uses for the new functional living ink based on different bacteria embedded in the hydrogel. One use includes the formation of bacterial cellulose using the bacterium A. xylinum. Cellulose is a structure that can be used for a variety of biomedical applications including treating burns. If P. putida is embedded in the hydrogel, then the Flink can be used to break down a pollutant called phenol. Flink has the potential to be used in other biological settings, such as the 3D printing of organs, but that is still far into the future.

MIT “Flink”

Engineers at Massachusetts Institute of Technology (MIT) have created a similar ink for 3D printing. The MIT ink is also composed of hydrogel and live bacteria cells. The research team, led by Professor Xuanhe Zhao, 3D printed a “live tattoo” that lights up in response to certain compounds. The living ink can be used as materials in wearable sensors and interactive displays. So far, the ink has been limited to application on the skin but the team will continue development to create a multiuse living ink for 3D printing.

Conclusion

Unlike Flubber, Flink is real and medical and biotech firms working with Flink may be entitled to R&D tax credits.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 


Charles Goulding and Rafaella July of R&D Tax Savers discuss living ink. 

 

Share this Article


Recent News

3D Printing News Briefs, March 2, 2024: 3D Printed Firearms, FDA Clearance, & More

3D Printing Financials: Materialise Reports Growth in 2023 with Medical Segment Success



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Financials: Xometry’s Year of Growth and Challenges

Finishing 2023 amid broader economic challenges that have troubled many in the 3D printing sector, Xometry (Nasdaq: XMTR) reported a solid 31% increase in the fourth quarter revenue, reaching $128...

3D Printing Financials: 3D Systems Misses Revenues by 9.32%, Targets 2027 for Clinical Human Lung Trials

In the latest financial unveiling, 3D Systems (NYSE: DDD) shared its fiscal report for the last quarter of 2023 and the entire year, shedding light on its struggles and strategic...

3D Printing Webinar and Event Roundup: February 25, 2024

It’s another busy week of webinars and events in the AM industry, including Silicone Expo Europe in Amsterdam, an open house for Massivit in North America, and the AM for...

Materialise Expands Jaw Surgeries with End-to-End Medical 3D Printing Treatment

Imagine the discomfort of experiencing pain every time you eat, or the constant radiating pain in your head due to this condition—it would be incredibly distressing. One reason why joint...