Custom 3D Printed Ossicular Prostheses Could Improve Treatment for Patients with Conductive Hearing Loss

IMTS

Share this Article

Today is the last day of this year’s Radiological Society of North America (RSNA) Annual Meeting, and we’ve been hearing a lot of announcements regarding 3D printing technology from the event, including Fovia’s new F.A.S.T. Cloud Development platform and the University of Utah Hospitals and Clinics health system launching TeraRecon’s 3D Print Pack Portal. Researchers from the University of Maryland School of Medicine (UMSOM) are presenting their study at the RSNA Annual Meeting, which details how they used CT scans and 3D printing technology to create accurate, custom prosthetic replacements for damaged parts of the middle ear, which could majorly improve treatment for patients with hearing loss.

 

Inside the middle ear are three tiny bones, called ossicles (see video above), which help transmit ear drum vibrations to the cochlea – the sensory hearing organ. When the ossicles are damaged, through incidents like infection or trauma, ossicular conductive hearing loss occurs. Prostheses can be used to restore continuity to the middle ear, but because the current prosthetic implants are often made from ceramic cups and stainless steel struts and don’t fit properly, there has been a high failure rate of using surgical reconstruction to treat conductive hearing loss.

Jeffrey D. Hirsch, M.D.

Jeffrey D. Hirsch, M.D., assistant professor of radiology at UMSOM and one of the study’s authors, explained, “The ossicles are very small structures, and one reason the surgery has a high failure rate is thought to be due to incorrect sizing of the prostheses. If you could custom-design a prosthesis with a more exact fit, then the procedure should have a higher rate of success.”

That phrasing – custom design a prosthesis – is where 3D printing technology comes into play. Dr. Hirsch and fellow study co-authors David Eisenman, M.D., and Richard Vincent, M.D., used 3D printing technology to create customized prostheses for patients with conductive hearing loss.

According to the abstract for their paper, “Surgical reconstruction of the ossicular chain with custom 3D printed ossicular prosthesis“:

“Conductive hearing loss due to ossicular abnormalities occurs from many causes, including trauma, infection, cholesteatoma, surgery and congenital anomalies. Surgical reconstruction of the ossicular chain is a well-established procedure for repair of ossicular defects, but is still plagued by high failure rates. Underlying disease and proper sizing of prostheses are two challenges that lead to component failure. Three-dimensional (3D) printing has been used successfully to solve a number of medical prosthesis problems. Custom 3D printing an individualized ossicular prosthesis would be a potential solution for the wide range of anatomic variation encountered in the pathological middle ear, and could decrease the rate of post-operative prosthesis displacement by increasing the likelihood of a proper fit, in addition to decreasing surgical time.”

In their study, the researchers wanted to see if data from commercially available CT scanners could be used to design a custom ossicular prosthesis, and if 3D printing technology could be used to create one that has a proper fit. Additionally, they wanted to see if surgeons would be able to detect the differences in the prostheses.

Size comparison between 3D printed prosthesis implant and a penny.

The team worked with three human cadavers, removing the middle linking bone in their ossicular chains, then used a CT scanner to capture the imaging data. Materialise Mimics Innovation Suite software was used to design custom prostheses, which were then 3D printed out of resin on a Formlabs Form 2 SLA 3D printer. Then came the final step – matching each prosthesis with the correct middle ear. According to an RSNA press release, four surgeons inserted the prostheses “blinded to the bone from and for which each was designed.”

The surgeons were all successful at matching the prosthesis model to the correct temporal bone, which contains the ear’s middle and inner parts, and according to Dr. Hirsch, this was no accident, because the “chances of this occurring randomly are 1 in 1,296.”

“This study highlights the core strength of 3-D printing — the ability to very accurately reproduce anatomic relationships in space to a sub-millimeter level. With these models, it’s almost a snap fit,” said Dr. Hirsch.

3D printed prosthesis implant.

The results of the study, which the researchers presented this morning at the RSNA Annual Meeting, show that commercial CT scanners are in fact able to detect major differences in the anatomy of normal middle ear ossicles, and furthermore, that 3D printing technology can be used to represent these differences, which will help decrease the time spent in surgery and increase the chances of making a properly fitted custom prostheses.

The team will now focus on using biocompatible materials to make custom prostheses, as well as potentially combining 3D printed prostheses with stem cells.

Dr. Hirsch said, “Instead of making the middle ear prosthesis solid, you could perforate it to be a lattice that allows stem cells to grow onto it. The stem cells would mature into bone and become a permanent fix for patients with hearing loss.”


Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: University of Maryland School of Medicine]

 

Share this Article


Recent News

Liquid Metal 3D Printing Sector Emerges with Fluent Metal’s $5.5M Investment

3DPOD Episode 191: Amy Alexander, 3D Printing at the Mayo Clinic



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 190: Generative Design for 3D Printing with Novineer CEO Ali Tamijani

Ali Tamijani, a professor in the Department of Aerospace Engineering at Embry-Riddle Aeronautical University, has an extensive background in composites, tool pathing, and the development of functional 3D printed parts,...

Featured

3DPOD Episode 189: AMUG President Shannon VanDeren

Shannon VanDeren is a consultant in the 3D printing industry, focusing on implementation and integration for her company, Layered Manufacturing and Consulting. For nearly ten years, she has been involved...

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry

Clare DiFazio’s journey into the 3D printing industry was serendipitous, yet her involvement at critical moments has significantly influenced the sector. Her position as Head of Marketing & Product Strategy...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...