Ames Laboratory Develops One-Step 3D Printing Process to Create Customizable, Chemically Active Catalysts

Share this Article

Many industries, from healthcare to aerospace and everything in between, have found ways to use 3D printing, but one area that’s still fairly new is using the technology to control chemical reactions – better known as catalysis. Catalysts are made from metals and ceramics, and can be formed to resemble objects such as gears, wheels, and honeycombs. 3D catalyst production consists of depositing chemically active agents onto structures that have been pre-printed, and according to specialty chemicals company Clariant, it’s not possible to 3D print catalysts in commercial quantities yet. But a recent development by the Ames Laboratory may bring us one step closer.

Ames is a US Department of Energy Office of Science national laboratory, and creates innovative energy solutions, materials, and technologies to solve global issues. It’s operated by Iowa State University, and has been focusing on its metal powder technology for the past year, but just developed a one-step 3D printing process to create chemically active catalytic objects.

One-step 3D printing process for catalysts that can be customized to any shape, like the Ames Laboratory logo design.

The lab’s newly developed method takes just one step, and inexpensive, commercial SLA 3D printers, to combine the chemistry with the structure to form customizable catalysts. Researchers first design the structures in a computer, and then shine a laser through a bath full of customized resins to build them – the laser polymerizes the resins, which contain crosslinkers, monomers, and photoinitiators, and hardens them by layers.

“The monomers, or building blocks that we start with, are designed to be bifunctional,” explained J. Sebastián Manzano, a graduate student in the Department of Chemistry at Iowa State who conducted most of the experiments. “They react with light to harden into the three-dimensional structure, and still retain active sites for chemical reactions to occur.”

The product that’s built from this process comes with “catalytic properties already intrinsic to the object,” Ames states.

Catalysts can be built in one step by directly shining a laser through a bath of customized resins that polymerize and harden layer-by- layer.

Manzano, Zachary B. Weinstein, Aaron D. Sadow, and Igor I. Slowing published a paper on their research, titled “Direct 3D Printing of Catalytically Active Structures,” in ACS Catalysis.

According to the abstract, “3D printing of materials with active functional groups can provide custom-designed structures that promote chemical conversions. Herein, catalytically active architectures were produced by photopolymerizing bifunctional molecules using a commercial stereolithographic 3D printer. Functionalities in the monomers included a polymerizable vinyl group to assemble the 3D structures and a secondary group to provide them with active sites. The 3D-printed architectures containing accessible carboxylic acid, amine, and copper carboxylate functionalities were catalytically active for the Mannich, aldol, and Huisgen cycloaddition reactions, respectively. The functional groups in the 3D-printed structures were also amenable to postprinting chemical modification. As proof of principle, chemically active cuvette adaptors were 3D printed and used to measure in situ the kinetics of a heterogeneously catalyzed Mannich reaction in a conventional solution spectrophotometer. In addition, 3D-printed millifluidic devices with catalytically active copper carboxylate complexes were used to promote azide–alkyne cycloaddition under flow conditions. The importance of controlling the 3D architecture of the millifluidic devices was evidenced by enhancing reaction conversion upon increasing the complexity of the 3D prints.”

The researchers used their innovative new method to build multiple catalysts, which were then tested and “demonstrated success” in a variety of chemical reactions that are often used in organic chemistry. In addition, by using post-processing, these catalysts were also able to adapt, which means that multi-step chemical reactions are a future possibility.

Slowing, a heterogeneous catalysis scientist at Ames Laboratory, said, “We can control the shape of the structure itself, what we call the macroscale features; and the design of the catalyst, the nanoscale features, at the same time. This opens up many possibilities to rapidly produce structures custom designed to perform a variety of chemical conversions.”

This research could help lead the way for scientists to develop even more efficient processes of producing catalysts for complex chemical reactions, which could then be used in a range of different industries.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source/Images: Ames Laboratory]

 

Share this Article


Recent News

Tesla Veteran Kevin Kassekert Takes the Helm as VulcanForms’ New CEO

3D Printing Unpeeled: Screen Printing Drugs, Repair Process for Marines & PCL Drug Release



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, September 15, 2024: Crowdfunding, EVs, Microalgae, & More

Good news for Fishy Filaments, which has reached a major funding milestone! This kicks off our business news in today’s 3D Printing News Briefs, followed by Voxel Innovations relocating its...

3D Printing News Briefs, September 7, 2024: Ceramics & e-Beam, 3D Circuits, & More

In 3D Printing News Briefs, Sandia acquired a second LCM 3D printer from Lithoz, and Freemelt successfully installed its e-MELT-iD at WEAREAM. Bright Laser Technologies now offers high-precision metal LPBF...

3D Printing News Unpeeled: Custom Cycling Shoes and Microwave Curing

 Lawrence Livermore National Laboratory (LLNL) has developed Microwave Volumetric Additive Manufacturing (MVAM), which uses microwaves to cure 3D printed parts. In a paper they explain that a multi-physics model let...

3D Printing News Unpeeled: $970 Million Contract, Plasters and HEA

Researchers from the University of Pennsylvania, the University of Colorado, NIST and more have worked on “Additive manufacturing of highly entangled polymer networks,” where low use of photoinitiators along with a...