Researchers Develop New Type of 3D Printed Wearable Antenna

Share this Article

The National Institute for Interdisciplinary Science and Technology (NIIST) is located in Thiruvananthapuram, India and is home to several brilliant scientists working in a range of fields of study. Recently, a group of those scientists used 3D printing to develop a new kind of wearable antenna that can be embedded into fabric, like military uniforms, for example. Antennae and wireless devices have been integrated into military uniforms for a long time for communication and monitoring purposes, but they’re not always perfect. Many of them, for example, are made from thin copper films attached to substrates of glass-reinforced epoxy, which makes them rigid and difficult to incorporate into textiles.

Researchers at NIIST have developed a new kind of wearable antenna 3D printed from a conductive silver ink. It’s flexible and lightweight, and, because it’s silver and not copper, will not oxidize. The bottom electrode on the polyester fabric the antenna was embedded into was 3D printed, as was the E-shaped patch antenna itself. The antenna could be used for a variety of applications, including defense, telemedicine and environmental monitoring.

“Our goal is to make wearable antenna which can be embedded in the jacket worn by soldiers in remote locations,” said Dr. P. Mohanan of Cochin University of Science and Technology, who also worked on the study. “We can connect the antenna to different sensors such as temperature, pressure and ECG sensors and the data can be transmitted to a remote server. The antenna can sense and communicate data in a non-intrusive manner. This way we can monitor the health of soldiers.”

An example of a printed antenna on clothing.

The antenna is about 3 cm long and 4 cm wide, and made to operate at about 3.37 GHertz. It’s coated with a PVC polymer to make it water-resistant, and can be woven into textiles for WiMAX (Worldwide Interoperability for Microwave Access) applications. To maximize flexibility and keep the ink from permeating the material during screen printing, the researchers hot pressed three layers of the textile with polyacrylate sheets between the layers. The polyacrylate sheets then acted as an adhesive.

This is another example of how 3D printing can be used to improve the manufacture of telecommunications devices such as antennae. In many cases, 3D printing has been used to make antennae smaller and less bulky, taking them from massive, multipart assemblies to compact devices composed of only one piece. The weight reduction that 3D printing offers means that satellites, for example, can be launched for far less cost.

On a smaller scale, 3D printing an antenna like the one created by NIIST means that it can be made more flexible and better capable of functioning in the field. In a military context, you really don’t want your communications devices malfunctioning, and every small advancement that can keep things like embedded antennae performing better is, in fact, a huge advancement.

Discuss this and other 3D printing topics at 3DPrintBoard.com, or share your thoughts below.

[Source: Tevo News]

 

Share this Article


Recent News

2019 NAMIC Global Additive Manufacturing Summit Day One

Meltio: An International Joining of Forces to Revolutionize the 3D Market



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Pharmaceutical Researchers Use REGEMAT 3D Technology for Drug Delivery

3D bioprinting is becoming an interesting alternative for medical professionals and research institutions that choose a more personalized treatment for their patients, this has potential to improve the quality of...

Sponsored

Custom Prototypes Creates a Unique Metal 3D Printed Faucet

This week a Toronto based 3D printing company, Custom Prototypes, revealed an impressive metal 3D printing project, an intricately designed bathroom faucet 3D printed in stainless steel. Over the past...

Markforged Metal X Now Lets You 3D Print in Inconel 625

Metal and composite 3D printer manufacturer Markforged has now released Inconel 625 for the Metal X system, bringing a high-performance nickel superalloy to many more users. Inconel 625 is used in...

Interview with Guy Ofek of GF Machining Solutions on Integrating Metal Additive in Manufacturing

Guy J. Ofek has spent over 16 years helping companies find the best manufacturing solutions throughout Asia. Nearly 11 years of those were in 3D Printing for Stratasys and other...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!