The R&D Tax Credit Aspects of Hybrid Additive Manufacturing

Share this Article

The fast moving technological advancements in machine tools and 3D metal printing is resulting in new hybrid manufacturing technological advancements. Within the next 5 years, the 3D printing industry is set to grow 20% to 30% per year, with larger growths present in the metal printing market. Recently, companies such as Mazak and DMG Mori have demonstrated “Hybrid Additive” machines capable of both multi-axis 3D printing of metal coupled with subtractive milling. This technology offers an exciting avenue for engineers who seek to push the limits for design complexity and efficiency in their product. Overall, significant business opportunities reside in the intersection of additive manufacturing and CNC milling.

The Research & Development Tax Credit

Enacted in 1981, the federal Research and Development (R&D) Tax Credit allows a credit of up to 13% of eligible spending for new and improved products and processes. Qualified research must meet the following four criteria:

  • New or improved products, processes, or software
  • Technological in nature
  • Elimination of uncertainty
  • Process of experimentation

Eligible costs include employee wages, cost of supplies, cost of testing, contract research expenses, and costs associated with developing a patent. On December 18, 2015 President Obama signed the bill making the R&D Tax Credit permanent. Beginning in 2016, the R&D credit can be used to offset Alternative Minimum Tax and startup businesses can utilize the credit against $250,000 per year in payroll taxes.

Firms which adopt advanced technologies often prove to be highly eligible to recieve tax credits for research and development activities. Often times activities include first article development and calibration for manufacturing, and prototyping expenses. As 3D printing grows to a key aspect of prototyping, consumed feedstock and labor used in file preparation can be a key financial contributor towards the tax credit.

R&D Opportunities for Hybrid Additive Manufacturing

Motion control technology and computing have moved in lock step for several decades now. As computers have become more powerful, properties of CNCs have advanced to take advantage of this processing power. Key functions such as positioning resolution, control loops, and coordination motion have improved due to faster and lower cost computing. Due to these advances, multi-axis CNC has been growing in popularity. Recently, a handful of firms have integrated laser metal deposition with 5-axis CNC machines to enable Hybrid Additive Manufacturing. However, despite advances in the path planning software, support for hybrid-manufacturing processes are limited. Thus, companies engaged in production development using a combination of additive manufacturing and subtractive manufacturing may engage in a highly iterative process of development to path planning. Generally, teams must metric factors such as material properties, material cost, tool wear, and overhead involved in production. Such factors may make hybrid additive manufacturing more attractive for highly intricate or technically demanding components. One example of which is SpaceX, the private space company famous for landing rockets on barges, which uses metal 3D printing on their rocket engines, such as the Super Draco, to enable highly efficient piping and thermal transfers which would not be attainable with any other conventional manufacturing method.

As companies begin to integrate additive manufacturing into their processes, overall efficiency of prototyping may begin to increase. A company that uses hybrid additive manufacturing for prototyping may have several good indicators of research and experimentation activities that help them to qualify for tax incentives. For example, prototypical development time reductions or process improvements achieved using hybrid additive manufacturing will often entail several experimental trials and material studies to qualify the method as a replacement for otherwise traditional manufacturing processes.

In 2014, DMG Mori announced the Lasertec 65 3D system, one of the first purpose-built hybrid manufacturing systems. The gantry is a 5-axis setup, drawing from DMG Mori’s experience in the CNC space. The machine is fitted with a 2kw laser, and uses aerosolized metal particulates to deposit material in feature sizes between 0.5mm and 5mm that is then annealed into a solid by the laser. The machine later can swap the tool head for a milling tool and remove a small amount of material to improve surface finish of the component.

The deposition nozzle on the Lasertec 65 supports several alloys, including Stainless Steel, Nickel-Based Alloys, Tungsten Carbide, Bronze, and Brass. Nickel based alloys are notoriously difficult to machine due to surface hardening and have been cost prohibitive. With the introduction of an effective method for additive manufacturing, more industries may be able to utilize these advanced alloys to create robust and corrosion resistant parts. Moreover, the machine may combine several materials into one part to achieve unique functional properties. The integration of new materials due to technological advances is often another key attribute found in companies that qualify for research and development tax credits.

Hybrid Manufacturing Technologies, founded in 2012, provides a retrofit laser metal deposition tool for CNC systems. Their Ambit system uses a laser and powder system similar to DMG Mori, but allows for cost savings for shops with CNC mills already in service. Hybrid Manufacturing Technologies has collaborated with several leading firms, including GE and Mazak, to provide retrofits services for shops servicing jet turbines and similar parts where complexity and accuracy specifications are high.

Overall, the Hybrid Additive Manufacturing space is at present a research and experimentation intensive industry. Many of the companies using these technologies produce small run products or prototypes with high complexity and advanced metals. As this manufacturing technology grows and reduces in cost, more companies will be involved in the characterization of this process for their production needs, demonstrating key activities for the R&D Tax Credit.

Discuss this and other 3D printing topics at 3DPrintBoard.com, or share your thoughts below.

 


Charles R. Goulding of R&D Tax Savers discusses hybrid 3D printing. 

 

Facebook Comments

Share this Article


Related Articles

The Perfect Match? Using 3D Printing and LEGO for Better Prototyping

Results of Daimler and BMW AutoAdd Project Show that 3D Printing for Mass Production in Automotive Industry is Possible



Categories

3D Design

3D Printed Architecture

3D Printed Art

3D printed chicken


You May Also Like

3D Printing and CNC Machining Platform Weerg Announces New Headquarters

There are many 3D printing platforms available online, but not as many that offer both 3D printing and CNC machining. One site that does is the new platform Weerg, which...

Optomec Introduces New Hybrid 3D Printing System, Used By Researchers to Make Dissolvable Magnesium Medical Implants

New Mexico-based Optomec is well-known for both its aerosol jet technology, which is used to 33D print electronics, and its other patented AM process: LENS, which uses Directed Energy Deposition (DED)...

CAxMan Project Supports Advancement of Industrial Additive Manufacturing

The world of additive manufacturing is constantly evolving, thanks to projects that endeavor to make it more efficient and effective. Many of those projects are designed to make hardware and...

3D Printing News Briefs: August 21, 2018

We’ve got plenty of business news for you in today’s 3D Printing News Briefs, and a little scientific research as well. Kelyniam Global has acquired new 3D printing technology, while...


Training


Shop

View our broad assortment of in house and third party products.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!