$90,000 Awarded to Developers of 3D Printed Retinal Model

Share this Article

[Image: American Academy of Ophthamology]

The retina is a light-sensitive layer of tissue in the eye that plays a vital role in vision – without a healthy, functioning retina, an eye cannot see properly. It’s important for medical professionals to gain a better understanding of diseases and conditions of the retina so that they can be better treated, but the eye is a complex organ, and existing research models of the eye don’t quite match the complicated architecture and functionality of a real one. In hopes of developing better research models, the National Eye Institute (NEI) announced in May that it would be awarding $1 million to whoever could create the best, most true-to-form lab-grown miniature retina in a petri dish.

The competition was part of the 3-D Retina Organoid Challenge, which was launched by the National Institutes of Health (NIH) in an attempt to find a model that could help physicians understand and treat diseases of the retina. A few days ago, the NEI announced the winning team.

“The diversity of disciplines within each team is impressive and their concept proposals showcase the creativity that occurs when vision researchers collaborate with experts from other fields,” said NEI Director Paul A. Sieving, M.D., Ph.D. “We intend for these concepts to push the development of retinal organoids. If developed, these next-generation human retina models would be invaluable resources for researchers in academia and industry.”

Erin Lavik

The winning team, which was awarded $90,000, was led by Erin Lavik, ScD, from the University of Maryland. The team’s proposal involves 3D printing layers of adult neural progenitor-derived retinal neurons that parallel the human retina structure, using a type of screenprinting. The 3D bioprinted retinal models were designed to allow researchers to study and find new ways to prevent the development of eye conditions such as age-related macular degeneration, glaucoma, and diabetic retinopathy – as well as to enable better pharmaceutical testing.

The award for the 3-D Retina Organoid Challenge (3-D ROC) is part of the first phase of the NEI’s plan to get a proposal developed. The second phase will be launching later this year, with $1 million set to go to teams that develop prototypes.

“During [the second] part [of 3-D ROC] we’re going to actually be asking people to develop their prototypes and that should last for about 2 to 3 years,” said Jessica Mazerik, Health Science Administrator with the NEI. “We want something very functional that recapitulates the structure and morphology, and eventually, hopefully, it can be commercialized and broadly used by the research community and companies. We want something that can be used a little bit more broadly and then that can also be picked up by pharmaceutical companies and used for drug screening drug validation and toxicology screening, and hopefully, modeling diseases.”

[Image courtesy of Erin Lavik]

According to the winning proposal, the technology developed is a form of screen printing that doesn’t rely on UV light and avoids issues like shearing.

“It is simple, reproducible, and highly scalable, making it suitable for high throughput assays. We have shown that we can print both a range of gels and cells in complex patterns with high resolution and reproducibility,” the proposal states. “This allows us to recapitulate the layers of the retina and to provide the matrix cues to promote the critical polarization of the cells types and promote the formation of appropriate synapses in the system, and enhanced survival of target neurons.”

Five honorable mentions were also awarded:

You can read the winning proposal here.

Discuss this and other 3D printing topics at 3DPrintBoard.com, or share your thoughts below. 

[Source: MD Magazine]

 

Facebook Comments

Share this Article


Related Articles

Bioprinting for Bone Regeneration with Nanofiber Coated Tubular Scaffolds

An Indian Bioprinting Startup is Working on 3D Printed ‘Liquid Cornea’ for Corneal Grafts



Categories

3D Design

3D Printed Architecture

3D Printed Art

3D printed chicken


You May Also Like

Bioprinting 101 Part 18 – Pharmaceutical Testing

A pharmaceutical test can be referred to as a clinical trial or a rigorously controlled test of a new drug or a new invasive medical device on human subjects. In...

Tomsk Polytechnic University Researchers Study Effects of Annealing in Bioprinting for Bone Regeneration

Scientists from Tomsk Polytechnic University have recently published ‘Effect of annealing on mechanical and morphological properties of Poly(L-lactic acid)/Hydroxyapatite composite as material for 3D printing of bone tissue growth stimulating...

A Window Into the Brain: Transparent 3D Printed Mouse Skulls for Alzheimer’s Research

There’s a long way to go to understanding the brain. So many questions remain unanswered, yet so much research is being done, like the former U.S. administration’s ambitious project, which...

Spanish Company BRECA Health Care is at the Forefront of Medical Devices & Bioprinting

In 2018 Spain’s health care system ranked third in the world, behind Hong Kong and Singapore, and first in Europe according to a Bloomberg study, so it’s no wonder that...


Training


Shop

View our broad assortment of in house and third party products.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!